Assessing Genotype by Environment Interaction in Case of Heterogeneous Measurement Error

Abstract

Considerable effort has been devoted to establish genotype by environment interaction (G \(\times \) E) in case of unmeasured genetic and environmental influences. Although it has been outlined by various authors that the appearance of G \(\times \) E can be dependent on properties of the given measurement scale, a non-biased method to assess G \(\times \) E is still lacking. We show that the incorporation of an explicit measurement model can remedy potential bias due to ceiling and floor effects. By means of a simulation study it is shown that the use of sum scores can lead to biased estimates whereas the proposed method is unbiased. The power of the suggested method is illustrated by means of a second simulation study with different sample sizes and G \(\times \) E effect sizes.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Bartholomew DJ, Steele F, Moustaki I, Galbraith J (2008) Analysis of multivariate social science data. Taylor Francis, New York

    Google Scholar 

  2. Bauer DJ, Hussong A (2009) Psychometric approaches for developing commensurate measures across independent studies: traditional and new models. Psychol Methods 14(2):101–125

    PubMed Central  PubMed  Article  Google Scholar 

  3. Box GEP, Tiao GC (1972) Bayesian inference in statistical analysis. Wiley, New York

    Google Scholar 

  4. Brendgen M, Vitaro F, Boivin M, Girard A, Bukowski WM, Dionne G et al (2009) Gene-environment interplay between peer rejection and depressive behavior in children. J Child Psychol Psychiatr 50(8):1009–1017

    Article  Google Scholar 

  5. Cadoret RJ, Cain CA, Crowe RR (1983) Evidence for gene-environment interaction in the development of adolescent antiscocial behavior. Behav Genet 13(3):301–310

    PubMed  Article  Google Scholar 

  6. Cameron ND (1993) Methodologies for estimation of genotype with environment interaction. Livest Prod Sci 35(3–4):237–249

    Article  Google Scholar 

  7. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854

    PubMed  Article  Google Scholar 

  8. Dick DM (2011) Gene-environment interaction in psychological traits and disorders. Annu Rev Clin Psychol 7:383–409

    PubMed Central  PubMed  Article  Google Scholar 

  9. Eaves LJ (1983) Errors of inference in the detection of major gene effects on psychological test scores. Am J Hum Genet 35(6):1179–1189

    PubMed Central  PubMed  Google Scholar 

  10. Eaves LJ (2006) Genotype x environment interaction in psychopathology: fact or artifact? Twin Res Hum Genet 9(1):1–8

    PubMed  Article  Google Scholar 

  11. Eaves LJ, Erkanli A (2003) Markov chain monte carlo approaches to analysis of genetic and environmental change and g x e interaction. Behav Genet 33(3):279–299

    PubMed  Article  Google Scholar 

  12. Eaves LJ, Last KA, Martin NG, Jinks JL (1977) A progressive appraoch to non-additivity and genotype-environmental covariance in the analysis of human differences. Br J Math Stat Psychol 30:1–42

    Article  Google Scholar 

  13. Embretson SE, Reise SP (2009) Item response theory for psychologists. Psychology Press, Oxford, UK

    Google Scholar 

  14. Faith MS, Berkowitz RI, Stallings VA, Kerns J, Storey M, Stunkard AJ (2004) Parental feeding attitudes and styles and child body mass index: prospective analysis of gene-environment interaction. Pediatrics 114(4):e429–e436

    PubMed  Article  Google Scholar 

  15. Friend A, DeFries JC, Olson RK, Pennington B, Harlaar N, Byrne B et al (2009) Heritability of high reading ability and its interaction with parental education. Behav Genet 39(4):427–436

    PubMed Central  PubMed  Article  Google Scholar 

  16. Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409

    Article  Google Scholar 

  17. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman and Hall, London

    Google Scholar 

  18. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–511

    Article  Google Scholar 

  19. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741

    PubMed  Article  Google Scholar 

  20. Harden KP, Turkheimer E, Loehlin JC (2006) Genotype by environment interaction in adolescent’s cognitive aptitude. Behav Genet 37(2):273–283

    PubMed Central  PubMed  Article  Google Scholar 

  21. Hessen DJ, Dolan CV (2009) Heteroscedastic one-factor models and marginal maximum likelihood estimation. Br J Math Stat Psychol 62(1):57–77

    PubMed  Article  Google Scholar 

  22. Hicks BM, DiRago AC, Iacono WG, McGue M (2009) Gene-environment interplay in internalizing discorders: consistent findings across six environmental risk factors. J Child Psychol Psychiatr 50(10):1309–1317

    Article  Google Scholar 

  23. Jinks JL, Fulker DW (1970) Comparison of the biometrical genetical, mava, and classical approaches to the analysis of human behavior. Psychol Bull 73(5):311–349

    PubMed  Article  Google Scholar 

  24. Joanes DN, Gill CA (1998) Comparing measures of sample skewness and kurtosis. The Statistician 47:183–189

    Google Scholar 

  25. Johnson W, Krueger RF (2005) Higher perceived life control decreases genetic variance in physical health: evidence from a national twin study. Personal Soc Psychol 88(1):165–173

    Article  Google Scholar 

  26. Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW et al (2006) Maoa, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatr 11(10):903–913

    Article  Google Scholar 

  27. Lau JY, Eley TC (2008) Disentangling gene environment correlations and interactions on adolescent depressive symptoms. J Child Psychol Psychiatr 49(2):142–150

    Article  Google Scholar 

  28. Lewis-Beck MS, Bryman A, Liao TF (2004) The sage encyclopedia of social science research methods. SAGE Publications, Thousand Oaks

    Google Scholar 

  29. Loehlin JC, Nichols PL (1976) Heredity, environment, and personality: a study of 850 sets of twins. University of Texas Press, Austin

    Google Scholar 

  30. Lord FM (1980) Applications of item response theory to practical testing problems. Lawrence Erlbaum Associates, Hilsdale

    Google Scholar 

  31. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) A bayesian modeling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  32. Martin N (2000) Gene-environment interaction and twin studies. In: Spector T, Snieder H, MacGregor A (eds) Advances in twin and sib-pair analysis. Greenwich Medical Media, London, pp 143–150

    Google Scholar 

  33. Masters GN (1982) A rasch model for partial credit scoring. Psychometrika 47(2):149–174

    Article  Google Scholar 

  34. Molenaar D, Dolan CV (2014) Testing systematic genotype by environment interactions using item level data. Behav Genet. doi:10.1007/s10519-014-9647-9

  35. Molenaar D, van der Sluis S, Boomsma DI, Dolan CV (2012) Detecting specific genotype by environment interactions using marginal maximum likelihood estimation in the classical twin design. Behav Genet 42:483–499

    PubMed Central  PubMed  Article  Google Scholar 

  36. Nikolaus S, Bode C, Taal E, Oostveen JC, Glas CA, van de Laar MA (2013) Items and dimensions for the construction of a multidimensional computerized adaptive test to measure fatigue in patients with rheumatoid arthritis. J Clin Epidemiol 66(10):1175–1183

    PubMed  Article  Google Scholar 

  37. Plummer M (2003) JAGS: a program for analysis of bayesian graphical models using gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003), March 20–22, Vienna, Austria. ISSN 1609-395X

  38. Plummer M (2013) rjags: Bayesian graphical models using mcmc. http://cran.r-project.org/package=rjags (R package version 3-10)

  39. R Development Core Team (2013) R: a language and environment for statistical computing. Vienna, Austria. http://www.R-project.org (ISBN 3-900051-07-0)

  40. Rasch G (1960) Probabilistic models for some intelligence and attainment tests. Danish Institute or Educational Research, Copenhagen

    Google Scholar 

  41. Reeve BB, Hays RD, Bjorner JB, Cook KF, Crane PK, Teresi JA et al (2007) Psychometric evaluation and calibration of healthrelated quality of life item banks: plans for the patient reported outcome measurement information system (promis). Med Care 45(5):22–31

    Article  Google Scholar 

  42. Samejima F (1970) Estimation of latent ability using a response pattern of graded scores. Psychometrika 35(1):139

    Article  Google Scholar 

  43. SanChristobal-Gaudy M, Elsen J, Bodin L, Chevalet C (1998) Prediciton of the response to a selection for canalisation of a continous trait in animal breeding. Genet Sel Evol 30:423–451

    Article  Google Scholar 

  44. Sorensen D (2010) The genetics of environmental variation. In: Proceedings of the 9th world congress on genetics applied to livestock. Leipzig, Germany

  45. Turkheimer E, Haley A, Waldron M, D’Onofrio B, Gottesman II (2003) Socioeconomic status modifies heritability of iq in young children. Psychol Sci 14(6):623–628

    PubMed  Article  Google Scholar 

  46. Turkheimer E, Waldron M (2000) Nonshared environment: a theoretical, methodological, and quantitative review. Psychol Bull 126(1):78–108

    PubMed  Article  Google Scholar 

  47. Tuvblad C, Grann M, Lichtenstein P (2006) Heritability for adolescent antisocial behavior differs with socioeconomic status: gene-environment interaction. J Child Psychol Psychiatr 47(7):734–743

    Article  Google Scholar 

  48. van den Berg SM, Beem L, Boomsma DI (2006) Fitting genetic Markov Chain Monte Carlo algorithms with BUGS. Twin Res Hum Genet 9:334–342

    PubMed  Article  Google Scholar 

  49. van den Berg SM, Glas CAW, Boomsma DI (2007) Variance decomposition using an IRT measurement model. Behav Genet 37(4):604–616

    PubMed Central  PubMed  Article  Google Scholar 

  50. van der Sluis S, Dolan CV, Neale MC, Boomsma DI, Posthuma D (2006) Detecting genotype-environment interaction in monozygotic twin data: comparing the Jinks and Fulker test and a new test based on Marginal Maximum Likelihood estimation. Twin Res Hum Genet 9(3):377–392

    PubMed  Article  Google Scholar 

  51. Veldkamp BP, Paap MCS (2013) Robust automated test assembly for testlet based tests: an illustration with the analytical reasoning section of the lsat (lsac research report, rr 13–02) (Technical Report). Law School Admission Council, Newtown

Download references

Acknowledgments

This study was funded by the PROO Grant 411-12-623 from the Netherlands Organisation for Scientific Research (NWO).

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Inga Schwabe.

Additional information

Edited by Gitta Lubke.

Appendix 1: JAGS script

Appendix 1: JAGS script

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwabe, I., van den Berg, S.M. Assessing Genotype by Environment Interaction in Case of Heterogeneous Measurement Error. Behav Genet 44, 394–406 (2014). https://doi.org/10.1007/s10519-014-9649-7

Download citation

Keywords

  • Genotype by environment interaction
  • Heterogeneous measurement error
  • Item response theory
  • Sum scores
  • Twin studies