Advertisement

Behavior Genetics

, Volume 43, Issue 4, pp 329–339 | Cite as

The Genetic Architecture of Liver Enzyme Levels: GGT, ALT and AST

  • Jenny H. D. A. van Beek
  • Marleen H. M. de Moor
  • Eco J. C. de Geus
  • Gitta H. Lubke
  • Jacqueline M. Vink
  • Gonneke Willemsen
  • Dorret I. Boomsma
Original Research

Abstract

High levels of liver enzymes GGT, ALT and AST are predictive of disease and all-cause mortality and can reflect liver injury, fatty liver and/or oxidative stress. Variation in GGT, ALT and AST levels is heritable. Moderation of the heritability of these liver enzymes by age and sex has not often been explored, and it is not clear to what extent non-additive genetic and shared environmental factors may play a role. To examine the genetic architecture of GGT, ALT and AST, plasma levels were assessed in a large sample of twins, their siblings, parents and spouses (N = 8,371; age range 18–90). For GGT and ALT, but not for AST, genetic structural equation modeling showed evidence for quantitative sex differences in the genetic architecture. There was no evidence for qualitative sex differences, i.e. the same genes were expressed in males and females. Both additive and non-additive genetic factors were important for GGT in females (total heritability h2 60 %) and AST in both sexes (total h2 43 %). The heritability of GGT in males and ALT for both sexes was due to additive effects only (GGT males 30 %; ALT males 40 %, females 22 %). Evidence emerged for shared environmental factors influencing GGT in the male offspring generation (variance explained 28 %). Thus, the same genes influence liver enzyme levels across sex and age, but their relative contribution to the variation in GGT and ALT differs in males and females and for GGT across age. Given adequate sample sizes these results suggest that genome-wide association studies may result in the detection of new susceptibility loci for liver enzyme levels when pooling results over sex and age.

Keywords

Liver enzymes Heritability Gamma-glutamyl transferase (GGT) Alanine aminotransferase (ALT) Aspartate aminotransferase (AST) 

Notes

Acknowledgments

This work has been executed in the Mental Health research program of the EMGO Institute for Health and Care Research and was supported by grants from the Netherlands Organization for Scientific Research (NWO) (ZonMW Addiction 31160008; NWO/SPI 56-464-14192; NWO 016-115-035; NWO-MW 904-61-193) and the European Research Council (Genetics of Mental Illness: ERC-230374; ERC starting grant 284167). We thank Professor J.B. Whitfield for useful discussions and the twin families for their participation in the NTR research.

Supplementary material

10519_2013_9593_MOESM1_ESM.pdf (240 kb)
Supplementary material 1 (PDF 239 kb)

References

  1. Bathum L, Petersen HC, Rosholm JU, Hyltoft Petersen P, Vaupel J, Christensen K (2001) Evidence for a substantial genetic influence on biochemical liver function tests: results from a population-based Danish twin study. Clin Chem 47:81–87PubMedGoogle Scholar
  2. Bentler PM, Bonett DG (1980) Significance tests and goodness of fit in the analysis of covariance structures. Psychol Bull 88:588–606CrossRefGoogle Scholar
  3. Brouwers MCGJ, Cantor RM, Kono N (2006) Heritability and genetic loci of fatty liver in familial combined hyperlipidemia. J Lipid Res 47:2799–2807PubMedCrossRefGoogle Scholar
  4. Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P et al (2011) Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 43:1131–1138PubMedCrossRefGoogle Scholar
  5. Conigrave KM, Davies P, Haber P, Whitfield JB (2003) Traditional markers of excessive alcohol use. Addiction 98:31–43PubMedCrossRefGoogle Scholar
  6. Eagon PK (2010) Alcoholic liver injury: influence of gender and hormones. World J Gastroenterol 16:1377–1384PubMedCrossRefGoogle Scholar
  7. Fraser A, Harris R, Sattar N, Ebrahim S, Davey Smith G, Lawlor DA (2009) Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes. Diabetes Care 32:741–750PubMedCrossRefGoogle Scholar
  8. Herbeth B, Samara A, Ndiaye C, Marteau JB, Berrahmoune H, Siest G et al (2010) Metabolic syndrome-related composite factors over 5 years in the STANISLAS family study: genetic heritability and common environmental influences. Clin Chim Acta 411:833–839PubMedCrossRefGoogle Scholar
  9. Honjo S, Kono S, Coleman MP, Shinchi K, Sakurai Y, Todoroki I et al (2001) Coffee consumption and serum aminotransferases in middle-aged Japanese men. J Clin Epidemiol 54:823–829PubMedCrossRefGoogle Scholar
  10. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y et al (2010) Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42:210–215PubMedCrossRefGoogle Scholar
  11. Kazemi-Shirazi L, Endler G, Winkler S, Schickbauer T, Wagner O, Marsik C (2007) Gamma glutamyltransferase and long-term survival: is it just the liver? Clin Chem 53:940–946PubMedCrossRefGoogle Scholar
  12. Keller MC, Medland SE, Duncan LE (2010) Are extended twin family designs worth the trouble? A comparison of the bias, precision, and accuracy of parameters estimated in four twin family models. Behav Genet 40:377–393PubMedCrossRefGoogle Scholar
  13. Kim HC, Nam CM, Jee SH, Kan KH, Oh DK, Suh I (2004) Normal serum aminotransferase concentration and risk of mortality from liver diseases: prospective cohort study. BMJ 328:983PubMedCrossRefGoogle Scholar
  14. Kollerits B, Coassin S, Kiechl S, Hunt SC, Paulweber B, Willeit J et al (2010) A common variant in the adiponutrin gene influences liver enzyme values. J Med Genet 47:116–119PubMedCrossRefGoogle Scholar
  15. Lee DH, Blomhoff R, Jacobs DR (2004) Review: is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res 38:535–539PubMedCrossRefGoogle Scholar
  16. Lee TH, Kim W, Benson JT, Therneau TM, Melton LJ III (2008) Serum aminotransferase activity and mortality risk in a United States community. Hepatology 47:880–887PubMedCrossRefGoogle Scholar
  17. Lin JP, O’Donnell CJ, Fox CS, Cupples LA (2009) Heritability of serum glutamyltransferase level: genetic analysis from the Framingham Offspring Study. Liver Int 29:776–777PubMedCrossRefGoogle Scholar
  18. Loomba R, Rao F, Zhang L, Khandrika S, Ziegler MG, Brenner DA et al (2010) Genetic covariance between gamma-glutamyl transpeptidase and fatty liver risk factors: role of beta 2-adrenergic receptor genetic variation in twins. Gastroenterology 139:836–845PubMedCrossRefGoogle Scholar
  19. Makkonen J, Pietiläinen KH, Rissanen A, Kaprio J, Yki-Järvinen H (2009) Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins. J Hepatol 50:1035–1042PubMedCrossRefGoogle Scholar
  20. Middelberg RP, Benyamin B, De Moor MHM, Warrington NM, Gordon S, Henders AK et al (2012) Loci affecting gamma-glutamyl transferase in adults and adolescents show age x SNP interaction and cardiometabolic disease associations. Hum Mol Genet 21:446–455PubMedCrossRefGoogle Scholar
  21. Miyake K, Miyake N, Kondo S, Tabe Y, Ohsaka A, Miida T (2009) Seasonal variation in liver function tests: a time-series analysis of outpatient data. Ann Clin Biochem 46:377–384PubMedCrossRefGoogle Scholar
  22. Neale MC, Cardon LR (1992) Methodology for genetic studies of twins and families. Kluwer, DordrechtCrossRefGoogle Scholar
  23. Neale MC, Boker SM, Xie G, Maes HH (2006) Mx: Statistical modeling (7 ed), 7th edn. VCU, RichmondGoogle Scholar
  24. Nilsson SE, Read S, Berg S, Johansson B (2009) Heritabilities for fifteen routine biochemical values: findings in 215 Swedish twin pairs 82 years of age or older. Scand J Clin Lab Invest 69:562–569PubMedCrossRefGoogle Scholar
  25. Pilia G, Chen WM, Scuteri A, Orru M, Albai G, Dei M et al (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet 2:e132PubMedCrossRefGoogle Scholar
  26. Posthuma D, Boomsma DI (2000) A note on the statistical power in extended twin designs. Behav Genet 30:147–158PubMedCrossRefGoogle Scholar
  27. Posthuma D, Beem AL, de Geus EJC, van Baal GCM, von Hjelmborg JB, Iachine I et al (2003) Theory and practice in quantitative genetics. Twin Res Hum Genet 6:361–376Google Scholar
  28. Pratt DS, Kaplan MM (2000) Evaluation of abnormal liver-enzyme results in asymptomatic patients. N Eng J Med 342:1266–1271CrossRefGoogle Scholar
  29. Rahman I, Bennet AM, Pedersen NL, de Faire U, Svensson P, Magnusson PKE (2009) Genetic dominance influences blood biomarker levels in a sample of 12,000 Swedish elderly twins. Twin Res Hum Genet 12:286–294PubMedCrossRefGoogle Scholar
  30. Rahmioglu N, Andrew T, Cherkas L, Surdulescu G, Swaminathan R, Spector TD et al (2009) Epidemiology and genetic epidemiology of the liver function test proteins. PLoS One 4:e4435PubMedCrossRefGoogle Scholar
  31. Ruhl CE, Everhart JE (2009) Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology 136:477–485PubMedCrossRefGoogle Scholar
  32. Schindhelm RK, Diamant M, Dekker JM, Tushuizen ME, Teerlink T, Heine RJ (2006) Alanine aminotransferase as a marker of nonalcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes Metab Res Rev 22:437–443PubMedCrossRefGoogle Scholar
  33. Sillanaukee P, Alho H, Strid N, Jousilahti P, Vartiainen E, Olsson U et al (2000) Effect of hormone balance on carbohydratedeficient transferrin and gammaglutamyltransferase in female social drinkers. Alcohol Clin Exp Res 24:1505–1509PubMedCrossRefGoogle Scholar
  34. Skurtveit S, Tverdal A (2002) Sex differences in gamma-glutamyltransferase in people aged 40–42 years in two Norwegian counties. Drug Alcohol Depend 67:95–98PubMedCrossRefGoogle Scholar
  35. Sookoian S, Pirola CJ (2011) Meta-analysis of the influence of I148 M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 53:1883–1894PubMedCrossRefGoogle Scholar
  36. Stromme JH, Rustad P, Steensland H, Theodorsen L, Urdal P (2004) Reference intervals for eight enzymes in blood of adult females and males measured in accordance with the International Federation of Clinical Chemistry reference system at 37 C: part of the Nordic Reference Interval Project. Scand J Clin Lab Invest 64:371–384PubMedCrossRefGoogle Scholar
  37. Sung J, Lee K, Song YM (2011) Heritabilities of Alcohol Use Disorders Identification Test (AUDIT) scores and alcohol biomarkers in Koreans: the KoGES (Korean Genome Epi Study) and Healthy Twin Study. Drug Alcohol Depend 113:104–109PubMedCrossRefGoogle Scholar
  38. Targher G (2009) Elevated serum gamma-glutamyltransferase activity is associated with increased risk of mortality, incident type 2 diabetes, cardiovascular events, chronic kidney disease and cancer: a narrative review. Clin Chem Lab Med 48:147–157Google Scholar
  39. Van Grootheest DS, van den Berg SM, Cath DC, Willemsen G, Boomsma DI (2008) Marital resemblance for obsessivecompulsive, anxious and depressive symptoms in a population-based sample. Psychol Med 38:1731–1740PubMedCrossRefGoogle Scholar
  40. Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34:274–285PubMedCrossRefGoogle Scholar
  41. Vink JM, Beem AL, Posthuma D, Neale MC, Willemsen G, Kendler KS et al (2004) Linkage analysis of smoking initiation and quantity in Dutch sibling pairs. Pharmacogenomics J 4:274–282PubMedCrossRefGoogle Scholar
  42. Vink JM, Staphorsius AS, Boomsma DI (2009) A genetic analysis of coffee consumption in a sample of Dutch twins. Twin Res Hum Genet 12:127–131PubMedCrossRefGoogle Scholar
  43. Whitfield JB, Martin NG (1985) Individual differences in plasma ALT, AST and GGT: contributions of genetic and environmental factors, including alcohol consumption. Enzyme 33:61–69PubMedGoogle Scholar
  44. Whitfield JB, Zhu G, Nestler JE, Heath AC, Martin NG (2002) Genetic covariation between serum gamma-glutamyltransferase activity and cardiovascular risk factors. Clin Chem 48:1426–1431PubMedGoogle Scholar
  45. Willemsen G, de Geus EJC, Bartels M, Van Beijsterveldt CEM, Brooks AI, Estourgie-van Burk GF et al (2010) The Netherlands Twin Register biobank: a resource for genetic epidemiological studies. Twin Res Hum Genet 13:231–245PubMedCrossRefGoogle Scholar
  46. Willemsen G, Vink JM, Abdellaoui A, Den Braber A, Van Beek JHDA, Draisma HHM et al (2013) The Adult Netherlands Twin Register: 25 years of survey and biological data collection. Twin Res Hum Genet 16(1):271–281PubMedCrossRefGoogle Scholar
  47. Yuan X, Waterworth D, Perry JRB, Lim N, Song K, Chambers JC et al (2008) Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet 83:520–528PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jenny H. D. A. van Beek
    • 1
    • 2
  • Marleen H. M. de Moor
    • 1
    • 2
  • Eco J. C. de Geus
    • 1
    • 2
    • 3
  • Gitta H. Lubke
    • 1
    • 4
  • Jacqueline M. Vink
    • 1
    • 3
  • Gonneke Willemsen
    • 1
    • 2
  • Dorret I. Boomsma
    • 1
    • 2
    • 3
  1. 1.Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
  2. 2.EMGO Institute for Health and Care Research, VU University Medical CenterAmsterdamThe Netherlands
  3. 3.Neuroscience Campus AmsterdamAmsterdamThe Netherlands
  4. 4.Department of PsychologyUniversity of Notre DameNotre DameUSA

Personalised recommendations