Behavior Genetics

, Volume 42, Issue 4, pp 559–578 | Cite as

Genetics of Physical Activity and Physical Inactivity in Humans

  • Daniel Monteiro de Vilhena e Santos
  • Peter T. Katzmarzyk
  • André Filipe Teixeira Seabra
  • José António Ribeiro Maia
Review Article

Abstract

Emerging evidence suggests that physical activity and sedentary behavior [reflected in physical inactivity (PI)], might be two different phenotypes that may have distinct underlying physiological mechanisms. The purpose of this review is to summarize the existing literature on the genetic determinants of PA and PI phenotypes in humans, considering them as distinct behaviors. Completed in January 2011, this review includes family studies, twin studies, association studies, genome-wide linkage studies and genome-wide association scan (GWAs) reporting different physical activity/inactivity-related phenotypes. In regards to PA, familial aggregation studies resulted in heritability estimates ranging from 0 to 60 %, and twin studies yielded heritability estimates (a2) and shared environment (c2) scores for PA phenotypes ranging from 0.00 to 0.85 and 0.00 to 0.84, respectively. Unique environmental (e2) results are well dispersed from 0.12 to 0.72. Suggestive linkages were found with markers nearby different activity-related genes: EDNRB, MC4R, UCP1, FABP2, CASR, SLC9A9. Significant associations with PA phenotypes were found for Ace, Gln223ARrg, MC4R and DRD2 genes. We found one GWAs that reported novel SNPs in the PAPSS2 gene on chromosome 10q23.2 and in two intergenic regions on chromosomes 2q33.1 and 18p11.32. Heritability estimates for PI ranged from 25 to 60 % and linkage studies recorded higher LOD scores for PI versus PA. The ACE genotype was strongly associated with PI. There are potentially different genetic influences on PA versus PI phenotypes. Future studies should focus on the different genetic influences on PA and PI to improve our understanding of underlying determinants of these behaviors.

Keywords

Physical activity Physical inactivity Heritability Candidate gene association Genetic linkage 

Notes

Acknowledgments

Thanks are expressed to the three anonymous reviewers, as well as to the FCT—Fundação para a Ciência e a Tecnologia for granting this research (PTDC/DES/67569/2006 FCOMP-01-0124-FEDEB-09608 and SFRH/BD/65290/2009).

References

  1. Aaltonen S, Ortega-Alonso A, Kujala UM, Kaprio J (2010) A longitudinal study on genetic and environmental influences on leisure time physical activity in the Finnish twin cohort. Twin Res Hum Genet 13(5):475–481PubMedCrossRefGoogle Scholar
  2. Aarnio M, Winter T, Kujala UM, Kaprio J (1997) Familial aggregation of leisure-time physical activity—a three generation study. Int J Sports Med 18(7):549–556PubMedCrossRefGoogle Scholar
  3. Baecke JA, Burema J, Frijters JE (1982) A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 36(5):936–942PubMedGoogle Scholar
  4. Berentzen T, Kring SI, Holst C, Zimmermann E, Jess T, Hansen T, Pedersen O, Toubro S, Astrup A, Sorensen TI (2008) Lack of association of fatness-related FTO gene variants with energy expenditure or physical activity. J Clin Endocrinol Metab 93(7):2904–2908PubMedCrossRefGoogle Scholar
  5. Beunen G, Thomis M (1999) Genetic determinants of sports participation and daily physical activity. Int J Obes Relat Metab Disord 23(Suppl 3):S55–S63PubMedCrossRefGoogle Scholar
  6. Bey L, Hamilton MT (2003) Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol 551(Pt 2):673–682PubMedCrossRefGoogle Scholar
  7. Boomsma DI, van den Bree MB, Orlebeke JF, Molenaar PC (1989) Resemblances of parents and twins in sports participation and heart rate. Behav Genet 19(1):123–141PubMedCrossRefGoogle Scholar
  8. Bouchard C, Tremblay A, Leblanc C, Lortie G, Savard R, Theriault G (1983) A method to assess energy expenditure in children and adults. Am J Clin Nutr 37(3):461–467PubMedGoogle Scholar
  9. Bouchard C, Rankinen T, Chagnon YC, Rice T, Perusse L, Gagnon J, Borecki I, An P, Leon AS, Skinner JS, Wilmore JH, Province M, Rao DC (2000) Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study. J Appl Physiol 88(2):551–559PubMedGoogle Scholar
  10. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C (2009) The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc 41(1):35–73PubMedCrossRefGoogle Scholar
  11. Butte NF, Cai G, Cole SA, Comuzzie AG (2006) Viva la Familia Study: genetic and environmental contributions to childhood obesity and its comorbidities in the Hispanic population. Am J Clin Nutr 84(3):646–654; quiz 673–644PubMedGoogle Scholar
  12. Cai G, Cole SA, Butte N, Bacino C, Diego V, Tan K, Goring HH, O’Rahilly S, Farooqi IS, Comuzzie AG (2006) A quantitative trait locus on chromosome 18q for physical activity and dietary intake in Hispanic children. Obesity (Silver Spring) 14(9):1596–1604CrossRefGoogle Scholar
  13. Carlsson S, Andersson T, Lichtenstein P, Michaelsson K, Ahlbom A (2006) Genetic effects on physical activity: results from the Swedish Twin Registry. Med Sci Sports Exerc 38(8):1396–1401PubMedCrossRefGoogle Scholar
  14. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100(2):126–131PubMedGoogle Scholar
  15. Chevalley T, Bonjour JP, Ferrari S, Hans D, Rizzoli R (2005) Skeletal site selectivity in the effects of calcium supplementation on areal bone mineral density gain: a randomized, double-blind, placebo-controlled trial in prepubertal boys. J Clin Endocrinol Metab 90(6):3342–3349PubMedCrossRefGoogle Scholar
  16. Choh AC, Demerath EW, Lee M, Williams KD, Towne B, Siervogel RM, Cole SA, Czerwinski SA (2009) Genetic analysis of self-reported physical activity and adiposity: the Southwest Ohio Family Study. Public Health Nutr 12(8):1052–1060PubMedCrossRefGoogle Scholar
  17. Christin L, O’Connell M, Bogardus C, Danforth E Jr, Ravussin E (1993) Norepinephrine turnover and energy expenditure in Pima Indian and white men. Metabolism 42(6):723–729PubMedCrossRefGoogle Scholar
  18. Cole SA, Butte NF, Voruganti VS, Cai G, Haack K, Kent JW Jr, Blangero J, Comuzzie AG, McPherson JD, Gibbs RA (2010) Evidence that multiple genetic variants of MC4R play a functional role in the regulation of energy expenditure and appetite in Hispanic children. Am J Clin Nutr 91(1):191–199PubMedCrossRefGoogle Scholar
  19. Cordain L, Gotshall RW, Eaton SB, Eaton SB 3rd (1998) Physical activity, energy expenditure and fitness: an evolutionary perspective. Int J Sports Med 19(5):328–335PubMedCrossRefGoogle Scholar
  20. De Moor MH, Posthuma D, Hottenga JJ, Willemsen G, Boomsma DI, De Geus EJ (2007a) Genome-wide linkage scan for exercise participation in Dutch sibling pairs. Eur J Hum Genet 15(12):1252–1259PubMedCrossRefGoogle Scholar
  21. De Moor MH, Spector TD, Cherkas LF, Falchi M, Hottenga JJ, Boomsma DI, De Geus EJ (2007b) Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet 10(6):812–820PubMedCrossRefGoogle Scholar
  22. De Moor MH, Stubbe JH, Boomsma DI, De Geus EJ (2007c) Exercise participation and self-rated health: do common genes explain the association? Eur J Epidemiol 22(1):27–32PubMedCrossRefGoogle Scholar
  23. De Moor MH, Liu YJ, Boomsma DI, Li J, Hamilton JJ, Hottenga JJ, Levy S, Liu XG, Pei YF, Posthuma D, Recker RR, Sullivan PF, Wang L, Willemsen G, Yan H, de Geus EJ, Deng HW (2009) Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc 41(10):1887–1895PubMedCrossRefGoogle Scholar
  24. Dishman RK, Sallis JF, Orenstein DR (1985) The determinants of physical activity and exercise. Public Health Rep 100(2):158–171PubMedGoogle Scholar
  25. Duncan GE, Goldberg J, Noonan C, Moudon AV, Hurvitz P, Buchwald D (2008) Unique environmental effects on physical activity participation: a twin study. PLoS ONE 3(4):e2019PubMedCrossRefGoogle Scholar
  26. Eriksson M, Rasmussen F, Tynelius P (2006) Genetic factors in physical activity and the equal environment assumption—the Swedish young male twins study. Behav Genet 36(2):238–247PubMedCrossRefGoogle Scholar
  27. Esparza J, Fox C, Harper IT, Bennett PH, Schulz LO, Valencia ME, Ravussin E (2000) Daily energy expenditure in Mexican and USA Pima Indians: low physical activity as a possible cause of obesity. Int J Obes Relat Metab Disord 24(1):55–59PubMedCrossRefGoogle Scholar
  28. Fisher A, van Jaarsveld CH, Llewellyn CH, Wardle J (2010) Environmental influences on children’s physical activity: quantitative estimates using a twin design. PLoS ONE 5(4):e10110PubMedCrossRefGoogle Scholar
  29. Franks PW, Ravussin E, Hanson RL, Harper IT, Allison DB, Knowler WC, Tataranni PA, Salbe AD (2005) Habitual physical activity in children: the role of genes and the environment. Am J Clin Nutr 82(4):901–908PubMedGoogle Scholar
  30. Frederiksen H, Christensen K (2003) The influence of genetic factors on physical functioning and exercise in second half of life. Scand J Med Sci Sports 13(1):9–18PubMedCrossRefGoogle Scholar
  31. Fuentes RM, Perola M, Nissinen A, Tuomilehto J (2002) ACE gene and physical activity, blood pressure, and hypertension: a population study in Finland. J Appl Physiol 92(6):2508–2512PubMedGoogle Scholar
  32. Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321PubMedCrossRefGoogle Scholar
  33. Good DJ, Coyle CA, Fox DL (2008) Nhlh2: a basic helix-loop-helix transcription factor controlling physical activity. Exerc Sport Sci Rev 36(4):187–192PubMedCrossRefGoogle Scholar
  34. Hakanen M, Raitakari OT, Lehtimaki T, Peltonen N, Pahkala K, Sillanmaki L, Lagstrom H, Viikari J, Simell O, Ronnemaa T (2009) FTO genotype is associated with body mass index after the age of seven years but not with energy intake or leisure-time physical activity. J Clin Endocrinol Metab 94(4):1281–1287PubMedCrossRefGoogle Scholar
  35. Hamilton MT, Hamilton DG, Zderic TW (2007) Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56(11):2655–2667PubMedCrossRefGoogle Scholar
  36. Joosen A, Gielen M, Vlietinck R, Westerterp KR (2005) Genetic analysis of physical activity in twins. Am J Clin Nutr 82(6):1253–1259PubMedGoogle Scholar
  37. Kaprio J, Koskenvuo M, Sarna S (1981) Cigarette smoking, use of alcohol, and leisure-time physical activity among same-sexed adult male twins. Prog Clin Biol Res 69(Pt C):37–46PubMedGoogle Scholar
  38. Katzmarzyk PT (2010) Physical activity, sedentary behavior, and health: paradigm paralysis or paradigm shift? Diabetes 59(11):2717–2725PubMedCrossRefGoogle Scholar
  39. Koopmans JR, Lorenz JPVD, Boomsma DI (1994) Smoking and sports participation. In: Goldbourt U, Faire U, Berg K (eds) Factors in coronary heart disease. Kluwer Academic, Dordrecht, pp 217–235CrossRefGoogle Scholar
  40. Larsen LH, Echwald SM, Sorensen TI, Andersen T, Wulff BS, Pedersen O (2005) Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile-onset obesity. J Clin Endocrinol Metab 90(1):219–224PubMedCrossRefGoogle Scholar
  41. Lauderdale DS, Fabsitz R, Meyer JM, Sholinsky P, Ramakrishnan V, Goldberg J (1997) Familial determinants of moderate and intense physical activity: a twin study. Med Sci Sports Exerc 29(8):1062–1068PubMedCrossRefGoogle Scholar
  42. Lee RB (2003) The Dobe Ju/’hoansi. Wadsworth Publishing, BelmontGoogle Scholar
  43. Liu GF, Zhu HD, Lagou V, Gutin B, Stallmann-Jorgensen IS, Treiber FA, Dong YB, Snieder H (2010) FTO variant rs9939609 is associated with body mass index and waist circumference, but not with energy intake or physical activity in European- and African-American youth. BMC Med Genet 11:57PubMedCrossRefGoogle Scholar
  44. Loos RJ, Rankinen T, Tremblay A, Perusse L, Chagnon Y, Bouchard C (2005) Melanocortin-4 receptor gene and physical activity in the Quebec Family Study. Int J Obes (Lond) 29(4):420–428CrossRefGoogle Scholar
  45. Lorentzon M, Lorentzon R, Lerner UH, Nordstrom P (2001) Calcium sensing receptor gene polymorphism, circulating calcium concentrations and bone mineral density in healthy adolescent girls. Eur J Endocrinol 144(3):257–261PubMedCrossRefGoogle Scholar
  46. Maia JA, Thomis M, Beunen G (2002) Genetic factors in physical activity levels: a twin study. Am J Prev Med 23(2 Suppl):87–91PubMedCrossRefGoogle Scholar
  47. McCaffery JM, Papandonatos GD, Bond DS, Lyons MJ, Wing RR (2009) Gene × environment interaction of vigorous exercise and body mass index among male Vietnam-era twins. Am J Clin Nutr 89(4):1011–1018PubMedCrossRefGoogle Scholar
  48. Mitchell BD, Rainwater DL, Hsueh WC, Kennedy AJ, Stern MP, Maccluer JW (2003) Familial aggregation of nutrient intake and physical activity: results from the San Antonio Family Heart Study. Ann Epidemiol 13(2):128–135PubMedCrossRefGoogle Scholar
  49. Montoye HJ, Kemper HCH, Washburn RA, Saris WH (1996) Measuring physical activity and energy expenditure. Human Kinetics Publishers, ChampaignGoogle Scholar
  50. Nagasaka J, Tsuji M, Takeda H, Matsumiya T (1999) Role of endothelin receptor subtypes in the behavioral effects of the intracerebroventricular administration of endothelin-1 in conscious rats. Pharmacol Biochem Behav 64(1):171–176PubMedCrossRefGoogle Scholar
  51. Palatini P, Graniero GR, Mormino P, Nicolosi L, Mos L, Visentin P, Pessina AC (1994) Relation between physical training and ambulatory blood pressure in stage I hypertensive subjects. Results of the HARVEST trial. Hypertension and ambulatory recording Venetia study. Circulation 90(6):2870–2876PubMedCrossRefGoogle Scholar
  52. Pereira MA, FitzerGerald SJ, Gregg EW, Joswiak ML, Ryan WJ, Suminski RR, Utter AC, Zmuda JM (1997) A collection of Physical Activity Questionnaires for health-related research. Med Sci Sports Exerc 29(6 Suppl):S1–S205PubMedGoogle Scholar
  53. Perusse L, Leblanc C, Bouchard C (1988) Familial resemblance in lifestyle components: results from the Canada Fitness Survey. Can J Public Health 79(3):201–205PubMedGoogle Scholar
  54. Perusse L, Tremblay A, Leblanc C, Bouchard C (1989) Genetic and environmental influences on level of habitual physical activity and exercise participation. Am J Epidemiol 129(5):1012–1022PubMedGoogle Scholar
  55. Raitakari OT, Taimela S, Porkka KV, Leino M, Telama R, Dahl M, Viikari JS (1996) Patterns of intense physical activity among 15- to 30-year-old Finns. The cardiovascular risk in young Finns study. Scand J Med Sci Sports 6(1):36–39PubMedCrossRefGoogle Scholar
  56. Rankinen T, Perusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C (2001) The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc 33(6):855–867PubMedCrossRefGoogle Scholar
  57. Rankinen T, Roth SM, Bray MS, Loos R, Perusse L, Wolfarth B, Hagberg JM, Bouchard C (2010) Advances in exercise, fitness, and performance genomics. Med Sci Sports Exerc 42(5):835–846PubMedCrossRefGoogle Scholar
  58. Richardson MT, Ainsworth BE, Wu HC, Jacobs DR Jr, Leon AS (1995) Ability of the atherosclerosis risk in communities (ARIC)/Baecke questionnaire to assess leisure-time physical activity. Int J Epidemiol 24(4):685–693PubMedCrossRefGoogle Scholar
  59. Richert L, Chevalley T, Manen D, Bonjour JP, Rizzoli R, Ferrari S (2007) Bone mass in prepubertal boys is associated with a Gln223Arg amino acid substitution in the leptin receptor. J Clin Endocrinol Metab 92(11):4380–4386PubMedCrossRefGoogle Scholar
  60. Scillitani A, Guarnieri V, De Geronimo S, Muscarella LA, Battista C, D’Agruma L, Bertoldo F, Florio C, Minisola S, Hendy GN, Cole DE (2004) Blood ionized calcium is associated with clustered polymorphisms in the carboxyl-terminal tail of the calcium-sensing receptor. J Clin Endocrinol Metab 89(11):5634–5638PubMedCrossRefGoogle Scholar
  61. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3(7):e115PubMedCrossRefGoogle Scholar
  62. Seabra AF, Mendonca DM, Goring HH, Thomis MA, Maia JA (2008) Genetic and environmental factors in familial clustering in physical activity. Eur J Epidemiol 23(3):205–211PubMedCrossRefGoogle Scholar
  63. Sherwood NE, Jeffery RW (2000) The behavioral determinants of exercise: implications for physical activity interventions. Annu Rev Nutr 20:21–44PubMedCrossRefGoogle Scholar
  64. Simonen RL, Perusse L, Rankinen T, Rice T, Rao DC, Bouchard C (2002) Familial aggregation of physical activity levels in the Quebec Family Study. Med Sci Sports Exerc 34(7):1137–1142PubMedCrossRefGoogle Scholar
  65. Simonen RL, Rankinen T, Perusse L, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2003a) A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol Behav 78(4–5):751–757PubMedCrossRefGoogle Scholar
  66. Simonen RL, Rankinen T, Perusse L, Rice T, Rao DC, Chagnon Y, Bouchard C (2003b) Genome-wide linkage scan for physical activity levels in the Quebec Family study. Med Sci Sports Exerc 35(8):1355–1359PubMedCrossRefGoogle Scholar
  67. Simonen R, Levalahti E, Kaprio J, Videman T, Battie MC (2004) Multivariate genetic analysis of lifetime exercise and environmental factors. Med Sci Sports Exerc 36(9):1559–1566PubMedGoogle Scholar
  68. Snitker S, Tataranni PA, Ravussin E (2001) Spontaneous physical activity in a respiratory chamber is correlated to habitual physical activity. Int J Obes Relat Metab Disord 25(10):1481–1486PubMedCrossRefGoogle Scholar
  69. Spinath FM, Wolf H, Angleitner A, Borkenau P, Riemann R (2002) Genetic and environmental influences on objectively assessed activity in adults. Personality Individ Differ 33(4):633–645CrossRefGoogle Scholar
  70. Stefan N, Vozarova B, Del Parigi A, Ossowski V, Thompson DB, Hanson RL, Ravussin E, Tataranni PA (2002) The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism. Int J Obes Relat Metab Disord 26(12):1629–1632PubMedCrossRefGoogle Scholar
  71. Stubbe JH, Boomsma DI, De Geus EJ (2005) Sports participation during adolescence: a shift from environmental to genetic factors. Med Sci Sports Exerc 37(4):563–570PubMedCrossRefGoogle Scholar
  72. Stubbe JH, Boomsma DI, Vink JM, Cornes BK, Martin NG, Skytthe A, Kyvik KO, Rose RJ, Kujala UM, Kaprio J, Harris JR, Pedersen NL, Hunkin J, Spector TD, de Geus EJ (2006) Genetic influences on exercise participation in 37,051 twin pairs from seven countries. PLoS ONE 1:e22PubMedCrossRefGoogle Scholar
  73. Tang-Christensen M, Havel PJ, Jacobs RR, Larsen PJ, Cameron JL (1999) Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J Clin Endocrinol Metab 84(2):711–717PubMedCrossRefGoogle Scholar
  74. Tsao TS, Li J, Chang KS, Stenbit AE, Galuska D, Anderson JE, Zierath JR, McCarter RJ, Charron MJ (2001) Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity. FASEB J 15(6):958–969PubMedCrossRefGoogle Scholar
  75. Tudge C (1999) Neanderthals, bandits and farmers: how agriculture really began. Yale University Press, New HavenGoogle Scholar
  76. Wang JG, Staessen JA (2000) Genetic polymorphisms in the renin-angiotensin system: relevance for susceptibility to cardiovascular disease. Eur J Pharmacol 410(2–3):289–302PubMedCrossRefGoogle Scholar
  77. Winnicki M, Accurso V, Hoffmann M, Pawlowski R, Dorigatti F, Santonastaso M, Longo D, Krupa-Wojciechowska B, Jeunemaitre X, Pessina AC, Somers VK, Palatini P (2004) Physical activity and angiotensin-converting enzyme gene polymorphism in mild hypertensives. Am J Med Genet 125A(1):38–44PubMedCrossRefGoogle Scholar
  78. Wolfarth B, Bray MS, Hagberg JM, Perusse L, Rauramaa R, Rivera MA, Roth SM, Rankinen T, Bouchard C (2005) The human gene map for performance and health-related fitness phenotypes: the 2004 update. Med Sci Sports Exerc 37(6):881–903PubMedGoogle Scholar
  79. Wood AC, Rijsdijk F, Saudino KJ, Asherson P, Kuntsi J (2008) High heritability for a composite index of children’s activity level measures. Behav Genet 38(3):266–276PubMedCrossRefGoogle Scholar
  80. Zderic TW, Hamilton MT (2006) Physical inactivity amplifies the sensitivity of skeletal muscle to the lipid-induced downregulation of lipoprotein lipase activity. J Appl Physiol 100(1):249–257PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Daniel Monteiro de Vilhena e Santos
    • 1
  • Peter T. Katzmarzyk
    • 2
  • André Filipe Teixeira Seabra
    • 1
  • José António Ribeiro Maia
    • 1
  1. 1.CIFI2D, Faculty of SportsUniversity of PortoPortoPortugal
  2. 2.Pennington Biomedical Research CenterLouisiana State University SystemBaton RougeUSA

Personalised recommendations