Behavior Genetics

, Volume 42, Issue 3, pp 449–460 | Cite as

Effects of Spatial and Cognitive Enrichment on Activity Pattern and Learning Performance in Three Strains of Mice in the IntelliMaze

  • Alina Codita
  • Abdul H. Mohammed
  • Antje Willuweit
  • Anja Reichelt
  • Enrico Alleva
  • Igor Branchi
  • Francesca Cirulli
  • Giovanni Colacicco
  • Vootele Voikar
  • David P. Wolfer
  • Frank J. U. Buschmann
  • Hans-Peter Lipp
  • Elisabetta Vannoni
  • Sven Krackow
Original Research

Abstract

The IntelliMaze allows automated behavioral analysis of group housed laboratory mice while individually assigned protocols can be applied concomitantly for different operant conditioning components. Here we evaluate the effect of additional component availability (enrichment) on behavioral and cognitive performance of mice in the IntelliCage, by focusing on aspects that had previously been found to consistently differ between three strains, in four European laboratories. Enrichment decreased the activity level in the IntelliCages and enhanced spatial learning performance. However, it did not alter strain differences, except for activity during the initial experimental phase. Our results from non-enriched IntelliCages proved consistent between laboratories, but overall laboratory-consistency for data collected using different IntelliCage set-ups, did not hold for activity levels during the initial adaptation phase. Our results suggest that the multiple conditioning in spatially and cognitively enriched environments are feasible without affecting external validity for a specific task, provided animals have adapted to such an IntelliMaze.

Keywords

IntelliCage Environmental enrichment Multi-laboratory study External validity Automated operant conditioning Spatial learning Mus musculus 

Supplementary material

10519_2011_9512_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Abramov U, Raud S, Innos J, Lasner H, Kurrikoff K, Turna T, Puussaar T, Okva K, Matsui T, Vasar E (2008) Different housing conditions alter the behavioural phenotype of Cck(2) receptor-deficient mice. Behav Brain Res 193:108–116PubMedCrossRefGoogle Scholar
  2. Abramov U, Kurrikoff K, Matsui T, Vasar E (2009) Environmental enrichment reduces mechanical hypersensitivity in neuropathic mice, but fails to abolish the phenotype of Cck2 receptor deficient mice. Neurosci Lett 467:230–233PubMedCrossRefGoogle Scholar
  3. Ammassari-Teule M, Castellano C (2004) Strains of rodents and the pharmacology of learning and memory. Neural Plast 11:205–216PubMedCrossRefGoogle Scholar
  4. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284PubMedCrossRefGoogle Scholar
  5. Brown SD, Wurst W, Kuhn R, Hancock JM (2009) The functional annotation of mammalian genomes: the challenge of phenotyping. Annu Rev Genet 43:305–333PubMedCrossRefGoogle Scholar
  6. Brunner E, Munzel U (2002) Nichtparametrische datenanalyse. Unverbundene stichproben. Springer, BerlinCrossRefGoogle Scholar
  7. Christensen LB (1977) Experimental methodology. Allyn and Bacon Inc, BostonGoogle Scholar
  8. Crabbe JC, Wahlsten D (2003) Of mice and their environments. Science 299:1313–1314PubMedCrossRefGoogle Scholar
  9. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672PubMedCrossRefGoogle Scholar
  10. Crawley JN, Paylor R (1997) A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 31:197–211PubMedCrossRefGoogle Scholar
  11. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132:107–124PubMedCrossRefGoogle Scholar
  12. Dahlborn K (1996) Evaluation of long-term environmental enrichment in the mouse. Scand J Lab Animal Science 23:97–106Google Scholar
  13. De Visser L, Van Den Bos R, Kuurman WW, Kas MJ, Spruijt BM (2006) Novel approach to the behavioural characterization of inbred mice: automated home cage observations. Genes Brain Behav 5:458–466PubMedCrossRefGoogle Scholar
  14. Deacon RM (2009) Burrowing: a sensitive behavioural assay, tested in five species of laboratory rodents. Behav Brain Res 200:128–133PubMedCrossRefGoogle Scholar
  15. Fuchs H, Durner VG, Adler T, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, Da Silva-Buttkus P, Neff F, Gotz A, Holter HansW, SM HorschM, Kastenmuller G, Kemter E, Lengger C, Maier H, Matloka M, Moller G, Naton B, Prehn C, Puk O, Racz RathkolbB, Romisch-Margl W, Rozman J, Wang-Sattlerm R, Schrewe A, Stoger C, Tost M, Adamski J, Aigner B, Beckers J, Behrendt H, Busch DH, Esposito I, Graw J, Illigm T, Ivandic B, Klingenspor M, Klopstock T, Kremmer E, Mempel M, Neschen S, Ollert M, Schulz H, Suhre K, Wolf E, Wurst W, Zimmer A, de Angelis MH (2011) Mouse phenotyping. Methods 53:120–135PubMedCrossRefGoogle Scholar
  16. Galsworthy MJ, Amrein I, Kuptsov PA, Poletaeva Ii, Zinn P, Rau A, Vyssotski A, Lipp H-P (2005) A comparison of wild-caught wood mice and bank voles in the Intellicage: assessing exploration, daily activity patterns and place learning paradigms. Behav Brain Res 157:211–217PubMedCrossRefGoogle Scholar
  17. Gates H, Mallon AM, Brown SD, EUMODIC Consortium (2011) High-throughput mouse phenotyping. Methods 53(4):394–404PubMedCrossRefGoogle Scholar
  18. Henderson ND (1976) Short exposure to enriched environments can increase genetic variability of behavior in mice. Dev Psycobiol 9(G):549–553CrossRefGoogle Scholar
  19. Hunter C, Clegg EJ (1973) Changes in body weight of the growing and adult mouse in response to hypoxic stress. J Anat 114:185–199PubMedGoogle Scholar
  20. Kafkafi N, Lipkind D, Benjamini Y, Mayo CL, Elmer GI, Golani I (2003) SEE locomotor behavior test discriminates C57BL/6J And Dba/2J mouse inbred strains across laboratories and protocol conditions. Behav Neurosci 117:464–477PubMedCrossRefGoogle Scholar
  21. Kafkafi N, Benjamini Y, Sakov A, Elmer GI, Golani I (2005) Genotype-environment interactions in mouse behavior: a way out of the problem. Proc Natl Acad Sci U S A 102:4619–4624PubMedCrossRefGoogle Scholar
  22. Krackow S, Vannoni E, Codita A, Mohammed AH, Cirulli F, Branchi I, Alleva E, Reichelt A, Willuweit A, Voikar V, Colacicco G, Wolfer DP, Buschmann FJU, Safi K, Lipp H-P (2010) Consistent behavioral phenotype differences between inbred mouse strains in the Intellicage. Genes Brain Behav 9:722–731PubMedCrossRefGoogle Scholar
  23. Lin EJ, Choi E, Liu X, Martin A, During MJ (2011) Environmental enrichment exerts sex-specific effects on emotionality in C57BL/6J mice. Behav Brain Res 216:349–357PubMedCrossRefGoogle Scholar
  24. Madronal N, Lopez-Aracil C, Rangel A, Del Rio JA, Delgado-Garcia JM, Gruart A (2010) Effects of enriched physical and social environments on motor performance, associative learning and hippocampal neurogenesis in mice. PLoS One 5:E11130PubMedCrossRefGoogle Scholar
  25. Mandillo S, Tucci V, Holter SM, Meziane H, Banchaabouchi MA, Kallnik M, Lad HV, Nolan PM, Ouagazzal AM, Coghill EL, Gale K, Golini E, Jacquot S, Krezel W, Parker A, Riet F, Schneider I, Marazziti D, Auwerx J, Brown SD, Chambon P, Rosenthal N, Tocchini-Valentini G, Wurst W (2008) Reliability, robustness and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genomics 34:243–255PubMedCrossRefGoogle Scholar
  26. Marques JM, Alonso I, Santos C, Silveira I, Olsson IA (2009) The spatial learning phenotype of heterozygous leaner mice is robust to systematic variation of the housing environment. Comp Med 59:129–138PubMedGoogle Scholar
  27. McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R (2001) The use of behavioral test batteries: effects of training history. Physiol Behav 73:705–717PubMedCrossRefGoogle Scholar
  28. Meyerson BJ, Augustsson H, Berg M, Roman E (2006) The concentric square field: a multivariate test arena for analysis of explorative strategies. Behav Brain Res 168:100–113PubMedCrossRefGoogle Scholar
  29. Mohammed AH, Zhu SW, Darmopil S, Hjerling-Leffler J, Ernfors P, Winblad B, Diamond MC, Eriksson PS, Bogdanovic N (2002) Environmental enrichment and the brain. Prog Brain Res 138:109–133PubMedCrossRefGoogle Scholar
  30. Olsson IA, Dahlborn K (2002) Improving housing conditions for laboratory mice: a review of “environmental enrichment”. Lab Anim 36:243–270PubMedCrossRefGoogle Scholar
  31. Paylor R (2009) Questioning standardization in science. Nat Methods 6:253–254PubMedCrossRefGoogle Scholar
  32. Paylor R, Spencer CM, Yuva-Paylor LA, Pieke-Dahl S (2006) The use of behavioral test batteries, II: effect of test interval. Physiol Behav 87:95–102PubMedCrossRefGoogle Scholar
  33. Podhorna J, Brown RE (2002) Strain differences in activity and emotionality do not account for differences in learning and memory performance between C57BL/6 and DBA/2 mice. Genes Brain Behav 1:96–110PubMedCrossRefGoogle Scholar
  34. Richter SH, Garner JP, Wurbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6:257–261PubMedCrossRefGoogle Scholar
  35. Richter SH, Garner JP, Auer C, Kunert J, Wurbel H (2010) Systematic variation improves reproducibility of animal experiments. Nat Methods 7:167–168PubMedCrossRefGoogle Scholar
  36. Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65PubMedCrossRefGoogle Scholar
  37. SAS Institute (2006) SAS/STAT 9.1 user’s guide. SAS Institute Inc., Cary, NC, USAGoogle Scholar
  38. Sztainberg Y, Chen A (2010) An environmental enrichment model for mice. Nat Protoc 5:1535–1539PubMedCrossRefGoogle Scholar
  39. Sztainberg Y, Kuperman Y, Tsoory M, Lebow M, Chen A (2010) The anxiolytic effect of environmental enrichment is mediated via amygdalar Crf receptor Type 1. Mol Psychiatry 15:905–917PubMedCrossRefGoogle Scholar
  40. Tang X, Orchard SM, Sanford LD (2002) Home cage activity and behavioral performance in inbred and hybrid mice. Behav Brain Res 136(2):555–569PubMedCrossRefGoogle Scholar
  41. Tsai PP, Pachowsky U, Stelzer HD, Hackbarth H (2002) Impact of environmental enrichment in mice. 1: effect of housing conditions on body weight organ weights and haematology in different strains. Lab Anim 36:411–419PubMedCrossRefGoogle Scholar
  42. Tsai PP, Stelzer HD, Hedrich HJ, Hackbarth H (2003) Are the effects of different enrichment designs on the physiology and behaviour of DBA/2 mice consistent? Lab Anim 37:314–327PubMedCrossRefGoogle Scholar
  43. Tucci V, Lad HV, Parker A, Polley S, Brown SD, Nolan PM (2006) Gene-environment interactions differentially affect mouse strain behavioral parameters. Mamm Genome 17:1113–1120PubMedCrossRefGoogle Scholar
  44. Valentinuzzi VS, Buxton OM, Chang AM, Scarbrough K, Ferrari EA, Takahashi JS, Turek FW (2000) Locomotor response to an open field during C57BL/6J active and inactive phases: differences dependent on conditions of illumination. Physiol Behav 69:269–275PubMedCrossRefGoogle Scholar
  45. Voikar V, Vasar E, Rauvala H (2004) Behavioral alterations induced by repeated testing in C57BL/6J and 129S2/Sv mice: implications for phenotyping screens. Genes Brain Behav 3:27–38PubMedCrossRefGoogle Scholar
  46. Voikar V, Colacicco G, Gruber O, Vannoni E, Lipp HP, Wolfer DP (2010) Conditioned response suppression in the IntelliCage: assessment of mouse strain differences and effects of hippocampal and striatal lesions on acquisition and retention of memory. Behav Brain Res 213:304–312PubMedCrossRefGoogle Scholar
  47. Wahlsten D, Metten P, Phillips TJ, Boehm SL 2nd, Burkhart-Kasch S, Dorow J, Doerksen S, Downing C, Fogarty J, Rodd-Henricks K, Hen R, Mckinnon CS, Merrill CM, Nolte C, Schalomon M, Schlumbohm JP, Sibert JR, Wenger CD, Dudek BC, Crabbe JC (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54:283–311PubMedCrossRefGoogle Scholar
  48. Williams BM, Luo Y, Ward C, Redd K, Gibson R, Kuczaj SA, Mccoy JG (2001) Environmental enrichment: effects on spatial memory and hippocampal CREB immunoreactivity. Physiol Behav 73:649–658PubMedCrossRefGoogle Scholar
  49. Wolfer DP, Litvin O, Morf S, Nitsch RM, Lipp H-P, Wurbel H (2004) Laboratory animal welfare: cage enrichment and mouse behaviour. Nature 432:821–822PubMedCrossRefGoogle Scholar
  50. Yee BK, Zhu SW, Mohammed AH, Feldon J (2007) Levels of neurotrophic factors in the hippocampus and amygdala correlate with anxiety- and fear-related behaviour in C57BL/6 mice. J Neural Transm 114:431–444PubMedCrossRefGoogle Scholar
  51. Zhu SW, Yee BK, Nyffeler M, Winblad B, Feldon J, Mohammed AH (2006) Influence of differential housing on emotional behaviour and neurotrophin levels in mice. Behav Brain Res 169:10–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alina Codita
    • 1
  • Abdul H. Mohammed
    • 1
    • 2
  • Antje Willuweit
    • 3
  • Anja Reichelt
    • 3
  • Enrico Alleva
    • 4
  • Igor Branchi
    • 4
  • Francesca Cirulli
    • 4
  • Giovanni Colacicco
    • 5
  • Vootele Voikar
    • 5
  • David P. Wolfer
    • 5
    • 6
    • 7
  • Frank J. U. Buschmann
    • 8
  • Hans-Peter Lipp
    • 5
    • 9
  • Elisabetta Vannoni
    • 5
    • 9
  • Sven Krackow
    • 5
    • 9
    • 10
  1. 1.Department of Neurobiology, Care Sciences and Society, Alzheimer Disease Research Center (KI-ADRC)Karolinska InstitutetStockholmSweden
  2. 2.School of Education, Psychology and Sports ScienceLinnaeus UniversityVäxjoSweden
  3. 3.Evotec Neurosciences GmbHHamburgGermany
  4. 4.Department of Cell Biology and Neuroscience, Section of Behavioural NeuroscienceIstituto Superiore di SanitàRomeItaly
  5. 5.Institute of AnatomyUniversity of ZürichZürichSwitzerland
  6. 6.Institute for Human Movement SciencesEidgenössische Technische Hochschule Zürich (ETH Zürich)ZürichSwitzerland
  7. 7.Zürich Center for Integrative Human PhysiologyUniversity of ZürichZürichSwitzerland
  8. 8.FBI Science GmbHEssenGermany
  9. 9.NewBehavior AGZürichSwitzerland
  10. 10.Biology DepartmentHumboldt UniversityBerlinGermany

Personalised recommendations