Advertisement

Behavior Genetics

, Volume 41, Issue 1, pp 58–66 | Cite as

A Dyslexia-Associated Variant in DCDC2 Changes Gene Expression

  • Haiying Meng
  • Natalie R. Powers
  • Ling Tang
  • Natalie A. Cope
  • Ping-Xia Zhang
  • Ramsay Fuleihan
  • Christopher Gibson
  • Grier P. Page
  • Jeffrey R. GruenEmail author
ORIGINAL RESEARCH

Abstract

Reading disability (RD) or dyslexia is a common neurogenetic disorder. Two genes, KIAA0319 and DCDC2, have been identified by association studies of the DYX2 locus on 6p21.3. We previously identified a 2445 bp deletion, and a compound STR within the deleted region (BV677278), in intron 2 of DCDC2. The deletion and several alleles of the STR are strongly associated with RD (P = 0.00002). In this study we investigated whether BV677278 is a regulatory region for DCDC2 by electrophoretic mobility shift and luciferase reporter assays. We show that oligonucleotide probes from the STR bind nuclear protein from human brain, and that alleles of the STR have a range of DCDC2-specific enhancer activities. Five alleles displayed strong enhancer activity and increased gene expression, while allele 1 showed no enhancer activity. These studies suggest that the association of BV677278 with RD reflects a role as a modifier of DCDC2 expression.

Keywords

Dyslexia Reading disability DCDC2 Regulatory region Association 

Notes

Acknowledgments

This study was supported by the International Dyslexia Association (R07420 to H.M.), and National Institutes of Health/National Institute of Neurological Disorders and Stroke (R01 NS43530 to J.R.G.). The authors thank Dr. Satish Ghatpandle for kindly providing the cell lines, Dr. Patrick G. Gallagher for scientific suggestions, and Dr. Seiyu Hosono, Dr. Zhi-jia Ye, Dr. Queenie Tan, and Dr. Rong Cong for technical assistance. We also thank Susan Chan for editing the manuscript.

Financial Disclosures

This manuscript describes the characterization of an enhancer element in DCDC2. Yale University has applied for a patent covering this element; authors Jeffrey Gruen and Haiying Meng are inventors on this patent. Furthermore, the patent rights have been licensed to a start-up company founded by Dr. Gruen.

Supplementary material

10519_2010_9408_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 38 kb)

References

  1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300Google Scholar
  2. Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14(5):988–995CrossRefPubMedGoogle Scholar
  3. Brkanac Z, Chapman NH, Matsushita MM, Chun L, Nielsen K, Cochrane E et al (2007) Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia. Am J Med Genet B Neuropsychiatr Genet 144B(4):556–560CrossRefPubMedGoogle Scholar
  4. Cardon LR, Smith SD, Fulker DW, Kimberling WJ, Pennington BF, DeFries JC (1994) Quantitative trait locus for reading disability on chromosome 6. Science 266(5183):276–279CrossRefPubMedGoogle Scholar
  5. Cope N, Harold D, Hill G, Moskvina V, Stevenson J, Holmans P et al (2005) Strong evidence that KIAA0319 on chromosome 6p Is a susceptibility gene for developmental dyslexia. Am J Hum Genet 76(4):581–591CrossRefPubMedGoogle Scholar
  6. Deffenbacher KE, Kenyon JB, Hoover DM, Olson RK, Pennington BF, DeFries JC et al (2004) Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses. Hum Genet 115:128–138CrossRefPubMedGoogle Scholar
  7. DeFries JC, Fulker DW, LaBuda MC (1987) Evidence for a genetic aetiology in reading disability of twins. Nature 329(6139):537–539CrossRefPubMedGoogle Scholar
  8. Fisher SE, Marlow AJ, Lamb J, Maestrini E, Williams DF, Richardson AJ et al (1999) A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am J Hum Genet 64(1):146–156CrossRefPubMedGoogle Scholar
  9. Francks C, Paracchini S, Smith SD, Richardson AJ, Scerri TS, Cardon LR et al (2004) A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet 75(6):1046–1058CrossRefPubMedGoogle Scholar
  10. Gabel LA, Gibson CJ, Gruen JR, Loturco JJ (2010) Progress towards a cellular neurobiology of reading disability. Neurobiol Dis 38(2):173–180CrossRefPubMedGoogle Scholar
  11. Gayan J, Olson RK (2001) Genetic and environmental influences on orthographic and phonological skills in children with reading disabilities. Dev Neuropsychol 20(2):483–507CrossRefPubMedGoogle Scholar
  12. Gayán J, Smith SD, Cherny SS, Cardon LR, Fulker DW, Brower AM et al (1999) Quantitative-trait locus for specific language and reading deficits on chromosome 6p. Am J Hum Genet 64(1):157–164CrossRefPubMedGoogle Scholar
  13. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521CrossRefPubMedGoogle Scholar
  14. Grigorenko EL, Wood FB, Meyer MS, Pauls DL (2000) Chromosome 6p influences on different dyslexia-related cognitive processes: further confirmation. Am J Hum Genet 66(2):715–723CrossRefPubMedGoogle Scholar
  15. Hirunsatit R, George ED, Lipska BK, Elwafi HM, Sander L, Yrigollen CM, Gelernter J, Grigorenko EL, Lappalainen J, Mane S, Nairn AC, Kleinman JE, Simen AA (2009) Twenty-one-base-pair insertion polymorphism creates an enhancer element and potentiates SLC6A1 GABA transporter promoter activity. Pharmacogenet Genomics 19(1):53–65CrossRefPubMedGoogle Scholar
  16. Jin ZG, Liu L, Zhong H, Zhang KJ, Chen YF, Bian W, Cheng LP, Jing NH (2006) Second intron of mouse nestin gene directs its expression in pluripotent embryonic carcinoma cells through POU factor binding site. Acta Biochim Biophys Sin 38(3):207–212CrossRefPubMedGoogle Scholar
  17. Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94(2):253–262CrossRefPubMedGoogle Scholar
  18. Katusic SK, Colligan RC, Barbaresi WJ, Schaid DJ, Jacobsen SJ (2001) Incidence of reading disability in a population-based birth cohort, 1976–1982, Rochester, Minn. Mayo Clin Proc 76(11):1081–1092CrossRefPubMedGoogle Scholar
  19. Lind PA, Luciano M, Wright MJ, Montgomery GW, Martin NG, Bates TC (2010) Dyslexia and DCDC2: normal variation in reading and spelling is associated with DCDC2 polymorphisms in an Australian population sample. Eur J Hum Genet [Epub ahead of print]Google Scholar
  20. Lu C, Li Y, Zhao Y, Xing G, Tang F, Wang Q, Sun Y, Wei H, Yang X, Wu C, Chen J, Guan KL, Zhang C, Chen H, He F (2002) Intracrine hepatopoietin potentiates AP-1 activity through JAB1 independent of MAPK pathway. FASEB J 16(1):90–92PubMedGoogle Scholar
  21. Ludwig KU, Schumacher J, Schulte-Korne G, Konig IR, Warnke A, Plume E et al (2008) Investigation of the DCDC2 intron 2 deletion/compound short tandem repeat polymorphism in a large German dyslexia sample. Psychiatr Genet 18(6):310–312CrossRefPubMedGoogle Scholar
  22. Meng H, Smith SD, Hager K, Held M, Liu J, Olson RK et al (2005) DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci USA 102(47):17053–17058CrossRefPubMedGoogle Scholar
  23. Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M, Wang Y et al (2006) The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Hum Mol Genet 15(10):1659–1666CrossRefPubMedGoogle Scholar
  24. Schumacher J, Anthoni H, Dahdouh F, Konig IR, Hillmer AM, Kluck N et al (2006) Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. Am J Hum Genet 78(1):52–62CrossRefPubMedGoogle Scholar
  25. Shaywitz SE, Shaywitz BA, Fletcher JM, Escobar MD (1990) Prevalence of reading disability in boys and girls. Results of the Connecticut Longitudinal Study. JAMA 264(8):998–1002CrossRefPubMedGoogle Scholar
  26. Taylor KR, Holzer AK, Bazan JF, Walsh CA, Gleeson JG (2000) Patient mutations in doublecortin define a repeated tubulin-binding domain. J Biol Chem 275:34442–34450CrossRefPubMedGoogle Scholar
  27. Wilcke A, Weissfuss J, Kirsten H, Wolfram G, Boltze J, Ahnert P (2009) The role of gene DCDC2 in German dyslexics. Ann Dyslexia 59(1):1–11CrossRefPubMedGoogle Scholar
  28. Wu KK (2006) Analysis of protein-DNA binding by streptavidin-agarose pulldown. In: Bina M (ed) Methods in molecular biology, vol 338: gene mapping, discovery, and expression: methods and protocols. Humana Press, Inc, Totowa, NJ, pp 281–290Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Haiying Meng
    • 1
  • Natalie R. Powers
    • 1
    • 2
  • Ling Tang
    • 1
  • Natalie A. Cope
    • 1
  • Ping-Xia Zhang
    • 1
  • Ramsay Fuleihan
    • 3
  • Christopher Gibson
    • 1
  • Grier P. Page
    • 4
  • Jeffrey R. Gruen
    • 1
    • 2
    • 5
    Email author
  1. 1.Department of PediatricsYale Child Health Research Center, Yale University School of MedicineNew HavenUSA
  2. 2.Department of GeneticsYale University School of MedicineNew HavenUSA
  3. 3.Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoUSA
  4. 4.Genomics and Statistical Genetics Research Unit, Research Triangle Institute InternationalAtlantaUSA
  5. 5.Investigative Medicine ProgramYale University School of MedicineNew HavenUSA

Personalised recommendations