Behavior Genetics

, Volume 40, Issue 5, pp 630–638 | Cite as

Association Between Polymorphisms of the Dopamine Receptor D2 and Catechol-o-Methyl Transferase Genes and Cognitive Function

  • Jennifer L. BoltonEmail author
  • Riccardo E. Marioni
  • Ian J. Deary
  • Sarah E. Harris
  • Marlene C. Stewart
  • Gordon D. Murray
  • F. Gerry R. Fowkes
  • Jackie F. Price
Original Research


The dopaminergic neurotransmitter system of the brain is involved in working memory and other cognitive functions. Studies suggest an important role for dopamine synthesis and uptake in modulation of human cognitive processes. We studied the association between polymorphisms in the catechol-o-methyl transferase (COMT) and dopamine receptor D2 (DRD2) genes and general cognitive ability in a secondary analysis of 2091 men and women, aged 55–80 years living in Scotland. General cognitive ability ‘g’ was derived from five cognitive tests of different domains. COMT was not associated with cognitive ability in this population. The DRD2 C:C genotype of rs6277 was associated with decreased general cognitive ability ‘g’ (p = 0.003), and DRD2 rs1800497 heterozygotes had lowest mean general cognitive ability ‘g’ (p = 0.007). There was an indication of a potential interaction between the DRD2 SNPs.


COMT DRD2 Genetic Cognition Dopamine Polymorphisms 

Supplementary material

10519_2010_9372_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 40 kb)
10519_2010_9372_MOESM2_ESM.doc (40 kb)
Supplementary material 2 (DOC 39 kb)
10519_2010_9372_MOESM3_ESM.doc (38 kb)
Supplementary material 3 (DOC 38 kb)


  1. Aalto S, Bruck A, Laine M, Nagren K, Rinne JO (2005) Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine d2 receptor ligand [11c]flb 457. J Neurosci 25(10):2471–2477CrossRefPubMedGoogle Scholar
  2. Bäckman L, Ginovart N, Dixon RA, Wahlin T-BR, Wahlin Å, Halldin C, Farde L (2000) Age-related cognitive deficits mediated by changes in the striatal dopamine system. Am J Psychiatry 157(4):635–637CrossRefPubMedGoogle Scholar
  3. Barnett JH, Jones P, Robbins T, Muller U (2007) Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Mol Psychiatry 12(5):502–509PubMedGoogle Scholar
  4. Barnett JH, Scoriels L, Munafò MR (2008) Meta-analysis of the cognitive effects of the catechol-o-methyltransferase gene val158/108met polymorphism. Biol Psychiatry 64(2):137–144CrossRefPubMedGoogle Scholar
  5. Bartres-Faz D, Junque C, Serra-Grabulosa JM, Lopez-Alomar A, Moya A, Bargallo N, Mercader JM, Moral P, Clemente IC (2002) Dopamine DRD2 Taq I polymorphism associates with caudate nucleus volume and cognitive performance in memory impaired subjects. Neuroreport 13(9):1121–1125CrossRefPubMedGoogle Scholar
  6. Bruder GE, Keilp JG, Xu H, Shikhman M, Schori E, Gorman JM, Gilliam TC (2005) Catechol-O-Methyltransferase (COMT) genotypes and working memory: associations with differing cognitive operations. Biol Psychiatry 58(11):901–907CrossRefPubMedGoogle Scholar
  7. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR (2004) Functional analysis of genetic variation in catechol-o-methyltransferase (comt): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75(5):807–821CrossRefPubMedGoogle Scholar
  8. Crawford JR, Deary IJ, Starr J, Whalley LJ (2001) The NART as an index of prior intellectual functioning: a retrospective validity study covering a 66 year interval. Psychol Med 31(03):451–458CrossRefPubMedGoogle Scholar
  9. Cropley VL, Fujita M, Innis RB, Nathan PJ (2006) Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry 59(10):898–907CrossRefPubMedGoogle Scholar
  10. de Frias CM, Annerbrink K, Westberg L, Eriksson E, Adolfsson R, Nilsson L-G (2004) COMT gene polymorphism is associated with declarative memory in adulthood and old age. Behav Genet 34(5):533–539CrossRefPubMedGoogle Scholar
  11. de Frias CM, Annerbrink K, Westberg L, Eriksson E, Adolfsson R, Nilsson LR (2005) Catechol O-methyltransferase Val (158) Met polymorphism is associated with cognitive performance in nondemented adults. J Cogn Neurosci 17(7):1018–1025CrossRefPubMedGoogle Scholar
  12. Deary IJ, Batty GD (2007) Cognitive epidemiology. J Epidemiol Community Health 61(5):378–384CrossRefPubMedGoogle Scholar
  13. Deary IJ, Whalley LJ, Crawford JR (2004a) An ‘instantaneous’ estimate of a lifetime’s cognitive change. Intelligence 32(2):113–119CrossRefGoogle Scholar
  14. Deary IJ, Wright AF, Harris SE, Whalley LJ, Starr JM (2004b) Searching for genetic influences on normal cognitive ageing. Trends Cogn Sci 8(4):178–184CrossRefPubMedGoogle Scholar
  15. Deary IJ, Spinath FM, Bates TC (2006) Genetics of intelligence. Eur J Hum Genet 14(6):690–700CrossRefPubMedGoogle Scholar
  16. Delcomyn F (1998) Foundations of neurobiology. WH Freeman, New YorkGoogle Scholar
  17. Dreher J-C, Meyer-Lindenberg A, Kohn P, Berman KF (2008) Age-related changes in midbrain dopaminergic regulation of the human reward system. Proc Natl Acad Sci USA 105(39):15106–15111CrossRefPubMedGoogle Scholar
  18. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 12(3):205–216CrossRefPubMedGoogle Scholar
  19. Fetsko LA, Xu R, Wang Y (2005) Effects of age and dopamine D2L receptor-deficiency on motor and learning functions. Neurobiol Aging 26(4):521–530CrossRefPubMedGoogle Scholar
  20. Finkel D, Reynolds CA, McArdle JJ, Pedersen NL (2005) The longitudinal relationship between processing speed and cognitive ability: genetic and environmental influences. Behav Genet 35(5):535–549CrossRefPubMedGoogle Scholar
  21. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198CrossRefPubMedGoogle Scholar
  22. Foltynie T, Lewis SGJ, Goldberg TE, Blackwell AD, Kolachana BS, Weinberger DR, Robbins TW, Barker RA (2005) The BDNF Val66Met polymorphism has a gender specific influence on planning ability in Parkinson’s disease. J Neurol 252(7):833–838CrossRefPubMedGoogle Scholar
  23. Fowkes FGR, Price JF, Stewart MCW, Butcher I, Leng GC, Pell ACH, Sandercock PAG, Fox KAA, Lowe GDO, Murray GD, & for the aspirin for asymptomatic Atherosclerosis T (2010) Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA 303(9):841–848CrossRefPubMedGoogle Scholar
  24. Goldberg TE, Weinberger DR (2004) Genes and the parsing of cognitive processes. Trends in Cogn Sci 8(7):325–335CrossRefGoogle Scholar
  25. Goldman D, Weinberger DR, Malhotra AK, Goldberg TE (2009) The role of COMT Val158Met in cognition. Biol Psychiatry 65(1):e1–e2CrossRefPubMedGoogle Scholar
  26. Gosso MF, de Geus EJC, Polderman TJC, Boomsma DI, Heutink P, Posthuma D (2008) Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: evidence of positive heterosis and gene-gene interaction on working memory functioning. Eur J Hum Genet 16(9):1075–1082CrossRefPubMedGoogle Scholar
  27. Green AE, Munafo MR, DeYoung CG, Fossella JA, Fan J, Gray JR (2008) Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nat Rev Neurosci 9(9):710–720CrossRefPubMedGoogle Scholar
  28. Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR (2003) Brain-Derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 23:6690–6694PubMedGoogle Scholar
  29. Harris SE, Wright AF, Hayward C, Starr JM, Whalley LJ, Deary IJ (2005) The functional COMT polymorphism, Val158Met, is associated with logical memory and the personality trait intellect/imagination in a cohort of healthy 79 year olds. Neurosci Lett 385(1):1–6CrossRefPubMedGoogle Scholar
  30. Ho BC, Wassink TH, O’Leary DS, Sheffield VC, Andreasen NC (2005) Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol Psychiatry 10(3):287–298CrossRefGoogle Scholar
  31. Hooi JD, Kester ADM, Stoffers HEJH, Rinkens PELM, Knottnerus JA, van Ree JW (2004) Asymptomatic peripheral arterial occlusive disease predicted cardiovascular morbidity and mortality in a 7 year follow-up study. J Clin Epidemiol 57(3):294–300CrossRefPubMedGoogle Scholar
  32. Kaasinen V, Rinne JO (2002) Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neurosci Biobehav Rev 26(7):785–793CrossRefPubMedGoogle Scholar
  33. Kemppainen N, Laine M, Laakso MP, Kaasinen V, Nagren K, Vahlberg T, Kurki T, Rinne JO (2003) Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer’s disease. Eur J Neurosci 18(1):149–154CrossRefPubMedGoogle Scholar
  34. Lezak MD (1995) Neuropsychological assessment. Oxford University Press, New YorkGoogle Scholar
  35. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I, Taskinen J (1995) Kinetics of human soluble and membrane-bound catechol o-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34(13):4202–4210CrossRefPubMedGoogle Scholar
  36. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159(4):652–654CrossRefPubMedGoogle Scholar
  37. McAllister TW, Flashman LA, Harker Rhodes C, Tyler AL, Moore JH, Saykin AJ, McDonald BC, Tosteson TD, Tsongalis GJ (2008) Single nucleotide polymorphisms in ANKK1 and the dopamine D2 receptor gene affect cognitive outcome shortly after traumatic brain injury: a replication and extension study. Brain Inj 22(9):705–714CrossRefPubMedGoogle Scholar
  38. McClearn GE, Johansson B, Berg S, Pedersen NL, Ahern F, Petrill SA, Plomin R (1997) Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276(5318):1560–1563CrossRefPubMedGoogle Scholar
  39. McGurn B, Starr JM, Topfer JA, Pattie A, Whiteman MC, Lemmon HA, Whalley LJ, Deary IJ (2004) Pronunciation of irregular words is preserved in dementia, validating premorbid IQ estimation. Neurology 62(7):1184–1186PubMedGoogle Scholar
  40. Moises HW, Frieboes RM, Spelzhaus P, Yang L, Köhnke M, Herden-Kirchhoff O, Vetter P, Neppert J, Gottesman II (2001) No association between dopamine D2 receptor gene (DRD2) and human intelligence. J Neural Transm 108(1):115–121CrossRefPubMedGoogle Scholar
  41. National_Statistics (ed.) (2005) Office for National Statistics—age structure.
  42. Nelson HE, Willison J (1991) National adult reading test (NART) test manual, 2nd edn. NFER-Nelson, WindsorGoogle Scholar
  43. O’Hara R, Miller E, Liao C-P, Way N, Lin X, Hallmayer J (2006) COMT genotype, gender and cognition in community-dwelling, older adults. Neurosci Lett 409(3):205–209CrossRefPubMedGoogle Scholar
  44. Petrill SA, Lipton PA, Hewitt JK, Plomin R, Cherny SS, Corley R, DeFries JC (2004) Genetic and environmental contributions to general cognitive ability through the first 16 years of Life. Dev Psychol 40(5):805–812CrossRefPubMedGoogle Scholar
  45. Prata DP, Mechelli A, Fu CHY, Picchioni M, Kane F, Kalidindi S, McDonald C, Howes O, Kravariti E, Demjaha A, Toulopoulou T, Diforti M, Murray RM, Collier DA, McGuire PK (2009) Opposite effects of catechol-o-methyltransferase val158met on cortical function in healthy subjects and patients with schizophrenia. Biol Psychiatry 65(6):473–480CrossRefPubMedGoogle Scholar
  46. Price JF, McDowell S, Whiteman MC, Deary IJ, Stewart MC, Fowkes FGR (2006) Ankle brachial index as a predictor of cognitive impairment in the general population: ten-year follow-up of the Edinburgh artery study. J Am Geriatr Soc 54(5):763CrossRefPubMedGoogle Scholar
  47. Price JF, Stewart MC, Deary IJ, Murray GD, Sandercock P, Butcher I, Fowkes FGR, & on behalf of the AAAT (2008) Low dose aspirin and cognitive function in middle aged to elderly adults: randomised controlled trial. BMJ 337:a1198CrossRefPubMedGoogle Scholar
  48. Raven J, Raven JC, Court JH (1998) Manual for Raven’s progressive matrices and vocabulary scales. Oxford Psychologists Press, OxfordGoogle Scholar
  49. Reuter M, Peters K, Schroeter K, Koebke W, Lenardon D, Bloch B, Hennig J (2005) The influence of the dopaminergic system on cognitive functioning: a molecular genetic approach. Behav Brain Res 164(1):93–99CrossRefPubMedGoogle Scholar
  50. Reynolds CA, Finkel D, McArdle JJ, Gatz M, Berg S, Pedersen NL (2005) Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Dev Psychol 41(1):3–16CrossRefPubMedGoogle Scholar
  51. Rodriguez-Jimenez R, Hoenicka J, Jimenez-Arriero M, Ponce G, Bagney A, Aragues M, Palomo T (2006) Performance in the Wisconsin card sorting test and the C957T polymorphism of the DRD2 gene in healthy volunteers. Neuropsychobiology 54:166–170CrossRefPubMedGoogle Scholar
  52. Savitz J, Solms M, Ramesar R (2006) The molecular genetics of cognition: dopamine, COMT and BDNF. Genes Brain Behav 5(4):311–328CrossRefPubMedGoogle Scholar
  53. Spreen O, Strauss E (1991) A compendium of neuropsychological tests: administration, norms, and commentary. Oxford University Press, New YorkGoogle Scholar
  54. Stewart MCW, Deary IJ, Fowkes FGR, Price JF (2006) Relationship between lifetime smoking, smoking status at older age and human cognitive function. Neuroepidemiology 26:83–92CrossRefPubMedGoogle Scholar
  55. Tsai S-J, Yu YW-Y, Lin C-H, Chen T-J, Chen S-P, Hong C-J (2002) Dopamine D2 receptor and N-Methyl-D-aspartate receptor 2B subunit genetic variants and intelligence. Neuropsychobiology 45:128–130CrossRefPubMedGoogle Scholar
  56. Turnbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-o-Methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60:141–151CrossRefGoogle Scholar
  57. Ulmanen I, Peranen J, Tenhunen J, Tilgmann C, Karhunen T, Panula P, Bernasconi L, Aubry J-P, Lundstrom K (1997) Expression and intracellular localization of catechol o-methyltransferase in transfected mammalian cells. Eur J Biochem 243(1–2):452–459CrossRefPubMedGoogle Scholar
  58. Volkow ND, Ding Y-S, Fowler JS, Wang G-J, Logan J, Gatley SJ, Hitzemann R, Smith G, Fields SD, Gur R (1996) Dopamine transporters decrease with age. J Nucl Med 37(4):554–559PubMedGoogle Scholar
  59. Welton NJ, Johnstone EC, David SP, Munafò MR (2008) A cost-effectiveness analysis of genetic testing of the DRD2 Taq1A polymorphism to aid treatment choice for smoking cessation. Nicotine Tob Res 10(1):231–240CrossRefPubMedGoogle Scholar
  60. Weschler D (1998) Weschler adult intelligence scale, 3rd edn. Psychological Corporation, LondonGoogle Scholar
  61. Xu H, Kellendonk CB, Simpson EH, Keilp JG, Bruder GE, Polan HJ, Kandel ER, Gilliam TC (2007) DRD2 C957T polymorphism interacts with the COMT Val158Met polymorphism in human working memory ability. Schizophr Res 90(1–3):104–107CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jennifer L. Bolton
    • 1
    Email author
  • Riccardo E. Marioni
    • 1
  • Ian J. Deary
    • 2
  • Sarah E. Harris
    • 2
  • Marlene C. Stewart
    • 1
  • Gordon D. Murray
    • 1
  • F. Gerry R. Fowkes
    • 1
  • Jackie F. Price
    • 1
  1. 1.Public Health SciencesUniversity of Edinburgh, Medical School, Teviot PlaceEdinburghUK
  2. 2.Department of PsychologyUniversity of EdinburghEdinburghUK

Personalised recommendations