Advertisement

Behavior Genetics

, Volume 40, Issue 2, pp 262–279 | Cite as

Description and Validation of a Dynamical Systems Model of Presynaptic Serotonin Function: Genetic Variation, Brain Activation and Impulsivity

  • Scott F. Stoltenberg
  • Parthasarathi Nag
Original Research

Abstract

Despite more than a decade of empirical work on the role of genetic polymorphisms in the serotonin system on behavior, the details across levels of analysis are not well understood. We describe a mathematical model of the genetic control of presynaptic serotonergic function that is based on control theory, implemented using systems of differential equations, and focused on better characterizing pathways from genes to behavior. We present the results of model validation tests that include the comparison of simulation outcomes with empirical data on genetic effects on brain response to affective stimuli and on impulsivity. Patterns of simulated neural firing were consistent with recent findings of additive effects of serotonin transporter and tryptophan hydroxylase-2 polymorphisms on brain activation. In addition, simulated levels of cerebral spinal fluid 5-hydroxyindoleacetic acid (CSF 5-HIAA) were negatively correlated with Barratt Impulsiveness Scale (Version 11) Total scores in college students (r = −.22, p = .002, N = 187), which is consistent with the well-established negative correlation between CSF 5-HIAA and impulsivity. The results of the validation tests suggest that the model captures important aspects of the genetic control of presynaptic serotonergic function and behavior via brain activation. The proposed model can be: (1) extended to include other system components, neurotransmitter systems, behaviors and environmental influences; (2) used to generate testable hypotheses.

Keywords

Cybernetic Control system Simulation Genetic polymorphism 

Notes

Acknowledgments

This work was partially supported by a three year research grant from the National Institute of Mental Health (NIMH) grant no. 1R15MH077654-01A. Also, the first author in this work was partially supported by NIH grant no. 2 P20 RR016479 from the INBRE program of the National Center for Research Resources. The second author will also like to thank the Department of Mathematics for their generous support and also for the Berkeley Madonna Software.

References

  1. Barr CS, Newman TK, Becker ML, Champoux M, Lesch KP, Suomi SJ, Goldman D, Higley JD (2003a) Serotonin transporter gene variation is associated with alcohol sensitivity in rhesus macaques exposed to early-life stress. Alcohol Clin Exp Res 27(5):812–817CrossRefPubMedGoogle Scholar
  2. Barr CS, Newman TK, Becker ML, Parker CC, Champoux M, Lesch KP, Goldman D, Suomi SJ, Higley JD (2003b) The utility of the non-human primate; model for studying gene by environment interactions in behavioral research. Genes Brain Behav 2(6):336–340CrossRefPubMedGoogle Scholar
  3. Baumgarten HG, Gothert M (1999) Serotonergic neurons and 5-HT receptors in the CNS. Springer, Berlin, p 767Google Scholar
  4. Baumgarten HG, Grozdanovic Z (1998) Role of serotonin in obsessive-compulsive disorder. Br J Psychiatry 35(Suppl):13–20Google Scholar
  5. Baumgarten HG, Grozdanovic Z (1999) Anatomy of central serotonergic projection systems. In: Baumgarten HG, Gothert M (eds) Serotonergic neurons and 5-HT receptors in the CNS. Springer, BerlinGoogle Scholar
  6. Bondy B, Buettner A, Zill P (2006) Genetics of suicide. Mol Psychiatry 11(4):336–351CrossRefPubMedGoogle Scholar
  7. Brodie ED III (2000) Why evolutionary genetics does not always add up. In: Wolf JB, Brodie ED III, Wade MJ (eds) Epistasis and the evolutionary process. Oxford University Press, Inc., New YorkGoogle Scholar
  8. Canli T, Lesch KP (2007) Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci 10(9):1103–1109CrossRefPubMedGoogle Scholar
  9. Canli T, Congdon E, Gutknecht L, Constable RT, Lesch KP (2005) Amygdala responsiveness is modulated by tryptophan hydroxylase-2 gene variation. J Neural Transm 112(11):1479–1485CrossRefPubMedGoogle Scholar
  10. Canli T, Congdon E, Todd Constable R, Lesch KP (2008) Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on neural correlates of affective processing. Biol Psychol 79(1):118–125CrossRefPubMedGoogle Scholar
  11. Carver CS, Miller CJ (2006) Relations of serotonin function to personality: current views and a key methodological issue. Psychiatry Res 144(1):1–15CrossRefPubMedGoogle Scholar
  12. Carver CS, Johnson SL, Joormann J (2008) Serotonergic function, two-mode models of self-regulation, and vulnerability to depression: what depression has in common with impulsive aggression. Psychol Bull 134(6):912–943CrossRefPubMedGoogle Scholar
  13. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854CrossRefPubMedGoogle Scholar
  14. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389CrossRefPubMedGoogle Scholar
  15. Cinquin O, Demongeot J (2002) Positive and negative feedback: striking a balance between necessary antagonists. J Theor Biol 216(2):229–241CrossRefPubMedGoogle Scholar
  16. de Groote L, Olivier B, Westenberg HG (2002) Extracellular serotonin in the prefrontal cortex is limited through terminal 5-HT(1B) autoreceptors: a microdialysis study in knockout mice. Psychopharmacology (Berl) 162(4):419–424CrossRefGoogle Scholar
  17. Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D, Nothen MM, Maffei P, Franke P, Fritze J, Maier W, Propping P, Beckmann H, Bellodi L, Lesch KP (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 8(4):621–624CrossRefPubMedGoogle Scholar
  18. Dunn NA, Lockery SR, Pierce-Shimomura JT, Conery JS (2004) A neural network model of chemotaxis predicts functions of synaptic connections in the nematode caenorhabditis elegans. J Comput Neurosci 17:137–147CrossRefPubMedGoogle Scholar
  19. Edelstein-Keshet L (1988) Mathematical models in biology. McGraw-Hill, New YorkGoogle Scholar
  20. El Mansari M, Blier P (2006) Mechanisms of action of current and potential pharmacotherapies of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 30(3):362–373CrossRefPubMedGoogle Scholar
  21. Evrard A, Laporte AM, Chastanet M, Hen R, Hamon M, Adrien J (1999) 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice. Eur J Neurosci 11(11):3823–3831CrossRefPubMedGoogle Scholar
  22. Evrard A, Malagie I, Laporte AM, Boni C, Hanoun N, Trillat AC, Seif I, De Maeyer E, Gardier A, Hamon M, Adrien J (2002) Altered regulation of the 5-HT system in the brain of MAO-A knock-out mice. Eur J Neurosci 15(5):841–851CrossRefPubMedGoogle Scholar
  23. Feinn R, Nellissery M, Kranzler HR (2005) Meta-analysis of the association of a functional serotonin transporter promoter polymorphism with alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 133(1):79–84Google Scholar
  24. Glanzman DL (2008) New tricks for an old slug: the critical role of postsynaptic mechanisms in learning and memory in Aplysia. Prog Brain Res 169:277–292CrossRefPubMedGoogle Scholar
  25. Gobbi G, Murphy DL, Lesch K, Blier P (2001) Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296(3):987–995PubMedGoogle Scholar
  26. Gotlib IH, Joormann J, Minor KL, Hallmayer J (2008) HPA axis reactivity: a mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biol Psychiatry 63(9):847–851CrossRefPubMedGoogle Scholar
  27. Gottesman II, Hanson DR (2005) Human development: biological and genetic processes. Annu Rev Psychol 56:263–286CrossRefPubMedGoogle Scholar
  28. Gottman JM, Murray JD, Swanson CC, Tyson R, Swanson KR (2002) The mathematics of marriage: dynamic nonlinear models. The MIT Press, CambridgeGoogle Scholar
  29. Green AE, Munafo MR, Deyoung CG, Fossella JA, Fan J, Gray JR (2008) Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nat Rev Neurosci 9(9):710–720CrossRefPubMedGoogle Scholar
  30. Grigorenko EL (2003) Epistasis and the genetics of complex traits. In: Plomin R, deFries JC, Craig IW, McGuffin P (eds) Behavioral genetics in the postgenomic era. American Psychological Association, Washington, pp 247–266CrossRefGoogle Scholar
  31. Gutknecht L, Waider J, Kraft S, Kriegebaum C, Holtmann B, Reif A, Schmitt A, Lesch KP (2008) Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J Neural Transm 115(8):1127–1132CrossRefPubMedGoogle Scholar
  32. Haghighi F, Bach-Mizrachi H, Huang YY, Arango V, Shi S, Dwork AJ, Rosoklija G, Sheng HT, Morozova I, Ju J, Russo JJ, Mann JJ (2008) Genetic architecture of the human tryptophan hydroxylase 2 gene: existence of neural isoforms and relevance for major depression. Mol Psychiatry 13(8):813–820CrossRefPubMedGoogle Scholar
  33. Haldane JBS (1924) A mathematical theory of natural and artificial selection. Trans Camb Phil Soc 23:19–41Google Scholar
  34. Hamer D, Sirota L (2000) Beware the chopsticks gene. Mol Psychiatry 5(1):11–13CrossRefPubMedGoogle Scholar
  35. Hariri AR, Weinberger DR (2003) Imaging genomics. Br Med Bull 65:259–270CrossRefPubMedGoogle Scholar
  36. Hartig PR (1999) Molecular biology and transductional characteristics of 5-HT receptors. In: Baumgarten HG, Gothert M (eds) Serotonergic neurons and 5-HT receptors in the CNS. Springer, Berlin, pp 175–212Google Scholar
  37. He M, Sibille E, Benjamin D, Toth M, Shippenberg T (2001) Differential effects of 5-HT1A receptor deletion upon basal and fluoxetine-evoked 5-HT concentrations as revealed by in vivo microdialysis. Brain Res 902(1):11–17CrossRefPubMedGoogle Scholar
  38. Herrmann MJ, Huter T, Muller F, Muhlberger A, Pauli P, Reif A, Renner T, Canli T, Fallgatter AJ, Lesch KP (2007) Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on emotional processing. Cereb Cortex 17(5):1160–1163CrossRefPubMedGoogle Scholar
  39. Hill EM, Stoltenberg SF, Bullard KH, Li S, Zucker RA, Burmeister M (2002) Antisocial alcoholism and serotonin-related polymorphisms: association tests. Psychiatr Genet 12(3):143–153CrossRefPubMedGoogle Scholar
  40. Hotamisligil GS, Breakefield XO (1991) Human monoamine oxidase A gene determines levels of enzyme activity. Am J Hum Genet 49(2):383–392PubMedGoogle Scholar
  41. Huang YY, Cate SP, Battistuzzi C, Oquendo MA, Brent D, Mann JJ (2004) An association between a functional polymorphism in the monoamine oxidase a gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 29(8):1498–1505CrossRefPubMedGoogle Scholar
  42. Hutchison KE, Stallings M, McGeary J, Bryan A (2004) Population stratification in the candidate gene study: fatal threat or red herring? Psychol Bull 130(1):66–79CrossRefPubMedGoogle Scholar
  43. Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2(8):e124CrossRefPubMedGoogle Scholar
  44. Jabbi M, Korf J, Kema IP, Hartman C, van der Pompe G, Minderaa RB, Ormel J, den Boer JA (2007) Convergent genetic modulation of the endocrine stress response involves polymorphic variations of 5-HTT, COMT and MAOA. Mol Psychiatry 12(5):483–490PubMedGoogle Scholar
  45. Johnson BA (2004) Role of the serotonergic system in the neurobiology of alcoholism: implications for treatment. CNS Drugs 18(15):1105–1118CrossRefPubMedGoogle Scholar
  46. Jonsson EG, Norton N, Gustavsson JP, Oreland L, Owen MJ, Sedvall GC (2000) A promoter polymorphism in the monoamine oxidase A gene and its relationships to monoamine metabolite concentrations in CSF of healthy volunteers. J Psychiatr Res 34(3):239–244CrossRefPubMedGoogle Scholar
  47. Khalil HK (1996) Nonlinear systems. Prentice Hall, Upper Saddle RiverGoogle Scholar
  48. Konno K, Matsumoto M, Togashi H, Yamaguchi T, Izumi T, Watanabe M, Iwanaga T, Yoshioka M (2007) Early postnatal stress affects the serotonergic function in the median raphe nuclei of adult rats. Brain Res 1172:60–66CrossRefPubMedGoogle Scholar
  49. Kravitz EA (2000) Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J Comp Physiol [A] 186(3):221–238CrossRefGoogle Scholar
  50. Leonardo ED, Hen R (2006) Genetics of affective and anxiety disorders. Annu Rev Psychol 57:117–137CrossRefPubMedGoogle Scholar
  51. Lesch KP, Wolozin BL, Murphy DL, Reiderer P (1993) Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem 60(6):2319–2322CrossRefPubMedGoogle Scholar
  52. Levinson DF (2006) The genetics of depression: a review. Biol Psychiatry 60(2):84–92CrossRefPubMedGoogle Scholar
  53. Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44(3):151–162CrossRefPubMedGoogle Scholar
  54. Mann JJ, Currier D, Murphy L, Huang YY, Galfalvy H, Brent D, Greenhill L, Oquendo M (2008) No association between a TPH2 promoter polymorphism and mood disorders or monoamine turnover. J Affect Disord 106(1–2):117–121CrossRefPubMedGoogle Scholar
  55. Mannoury la Cour C, Boni C, Hanoun N, Lesch KP, Hamon M, Lanfumey L (2001) Functional consequences of 5-HT transporter gene disruption on 5-HT(1a) receptor-mediated regulation of dorsal raphe and hippocampal cell activity. J Neurosci 21(6):2178–2185PubMedGoogle Scholar
  56. McClearn GE (2004) Nature and nurture: interaction and coaction. Am J Med Genet B Neuropsychiatr Genet 124B(1):124–130CrossRefPubMedGoogle Scholar
  57. Murphy DL, Lesch KP (2008) Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9(2):85–96CrossRefPubMedGoogle Scholar
  58. Parsons LH, Kerr TM, Tecott LH (2001) 5-HT(1A) receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J Neurochem 77(2):607–617CrossRefPubMedGoogle Scholar
  59. Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51(6):768–774CrossRefPubMedGoogle Scholar
  60. Perko L (1991) Differential equations and dynamical systems. Springer, New YorkGoogle Scholar
  61. Pezawas L, Meyer-Lindenberg A, Goldman AL, Verchinski BA, Chen G, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR (2008) Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol Psychiatry 13(7):709–716CrossRefPubMedGoogle Scholar
  62. Philibert R, Madan A, Andersen A, Cadoret R, Packer H, Sandhu H (2007) Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island. Am J Med Genet B Neuropsychiatr Genet 144B(1):101–105CrossRefPubMedGoogle Scholar
  63. Philibert RA, Gunter TD, Beach SR, Brody GH, Madan A (2008a) MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet B Neuropsychiatr Genet 147B(5):565–570CrossRefPubMedGoogle Scholar
  64. Philibert RA, Sandhu H, Hollenbeck N, Gunter T, Adams W, Madan A (2008b) The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. Am J Med Genet B Neuropsychiatr Genet 147B(5):543–549CrossRefPubMedGoogle Scholar
  65. Plomin R, deFries JC, Craig IW, McGuffin P (2003) Behavioral genomics. In: Plomin R, deFries JC, Craig IW, McGuffin P (eds) Behavioral genetics in the postgenomic era. American Psychological Association, Washington, pp 531–540CrossRefGoogle Scholar
  66. Rao H, Gillihan SJ, Wang J, Korczykowski M, Sankoorikal GM, Kaercher KA, Brodkin ES, Detre JA, Farah MJ (2007) Genetic variation in serotonin transporter alters resting brain function in healthy individuals. Biol Psychiatry 62(6):600–606CrossRefPubMedGoogle Scholar
  67. Reuter M, Ott U, Vaitl D, Hennig J (2007) Impaired executive control is associated with a variation in the promoter region of the tryptophan hydroxylase 2 gene. J Cogn Neurosci 19(3):401–408CrossRefPubMedGoogle Scholar
  68. Richer M, Hen R, Blier P (2002) Modification of serotonin neuron properties in mice lacking 5-HT1A receptors. Eur J Pharmacol 435(2–3):195–203CrossRefPubMedGoogle Scholar
  69. Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, Griem A, Kovacs M, Ott J, Merikangas KR (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. Jama 301(23):2462–2471CrossRefPubMedGoogle Scholar
  70. Sharp T, Umbers V, Gartside SE (1997) Effect of a selective 5-HT reuptake inhibitor in combination with 5-HT1A and 5-HT1B receptor antagonists on extracellular 5-HT in rat frontal cortex in vivo. Br J Pharmacol 121(5):941–946CrossRefPubMedGoogle Scholar
  71. Sheehan K, Lowe N, Kirley A, Mullins C, Fitzgerald M, Gill M, Hawi Z (2005) Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. Mol Psychiatry 10(10):944–949CrossRefPubMedGoogle Scholar
  72. Soderstrom H, Blennow K, Manhem A, Forsman A (2001) CSF studies in violent offenders. I. 5-HIAA as a negative and HVA as a positive predictor of psychopathy. J Neural Transm 108(7):869–878CrossRefPubMedGoogle Scholar
  73. Sontag ED (2005) Molecular systems biology and control. Eur J Control 11(4–5):396–435CrossRefGoogle Scholar
  74. Stenfors C, Ross SB (2004) Changes in extracellular 5-HIAA concentrations as measured by in vivo microdialysis technique in relation to changes in 5-HT release. Psychopharmacology (Berl) 172(2):119–128CrossRefGoogle Scholar
  75. Stoltenberg SF (2003) Serotonergic agents and alcoholism treatment: a simulation. Alcohol Clin Exp Res 27(12):1853–1859CrossRefPubMedGoogle Scholar
  76. Stoltenberg SF (2005) Epistasis among presynaptic serotonergic system components. Behav Genet 35(2):199–209CrossRefPubMedGoogle Scholar
  77. Stoltenberg SF (2010) Dynamic and systems-based models for evaluating hypotheses related to predicting treatment response. In: Johnson BA (ed) Addictive disorders and substance abuse. Springer, New YorkGoogle Scholar
  78. Stoltenberg SF, Nag P (2007) Applying control system modelling to understand how genetic variation influences serotonin function and behavior. In: Lassau JA (ed) Neural synapse research trends. Nova Science Publishers, Inc., New York, pp 133–171Google Scholar
  79. Stoltenberg SF, Glass JM, Chermack ST, Flynn HA, Li S, Weston ME, Burmeister M (2006) Possible association between response inhibition and a variant in the brain-expressed tryptophan hydroxylase-2 gene. Psychiatr Genet 16(1):35–38CrossRefPubMedGoogle Scholar
  80. Stoltenberg SF, Batien BD, Birgenheir DG (2008) Does gender moderate associations among impulsivity and health-risk behaviors? Addict Behav 33(2):252–265CrossRefPubMedGoogle Scholar
  81. Sullivan PF (2007) Spurious genetic associations. Biol Psychiatry 61(10):1121–1126CrossRefPubMedGoogle Scholar
  82. Thompson BL, Stanwood GD (2008) Pleiotropic effects of neurotransmission during development: modulators of modularity. J Autism Dev Disord 39(2):260–268CrossRefPubMedGoogle Scholar
  83. Vage J, Lingaas F (2008) Single nucleotide polymorphisms (SNPs) in coding regions of canine dopamine- and serotonin-related genes. BMC Genet 9:10CrossRefPubMedGoogle Scholar
  84. van der Stelt HM, Broersen LM, Olivier B, Westenberg HG (2004) Effects of dietary tryptophan variations on extracellular serotonin in the dorsal hippocampus of rats. Psychopharmacology (Berl) 172(2):137–144CrossRefGoogle Scholar
  85. Veenstra-VanderWeele J, Cook EH Jr (2003) Knockout mouse points to second form of tryptophan hydroxylase. Mol Interv 3(2):72–75, 50Google Scholar
  86. Virkkunen M, Goldman D, Linnoila M (1996) Serotonin in alcoholic violent offenders. Ciba Found Symp 194168–194177; discussion 177–182Google Scholar
  87. Vomel M, Wegener C (2008) Neuroarchitecture of aminergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS ONE 3(3):e1848CrossRefPubMedGoogle Scholar
  88. Ward LM (2002) Dynamical cognitive science. The MIT Press, CambridgeGoogle Scholar
  89. Weiner N (1965) Cybernetics, second edition: or the control and communication in the animal and the machine. The MIT Press, CambridgeGoogle Scholar
  90. Weiss LA, Abney M, Cook EH Jr, Ober C (2005) Sex-specific genetic architecture of whole blood serotonin levels. Am J Hum Genet 76(1):33–41CrossRefPubMedGoogle Scholar
  91. Westergaard GC, Suomi SJ, Chavanne TJ, Houser L, Hurley A, Cleveland A, Snoy PJ, Higley JD (2003) Physiological correlates of aggression and impulsivity in free-ranging female primates. Neuropsychopharmacology 28(6):1045–1055PubMedGoogle Scholar
  92. Williams RB, Marchuk DA, Gadde KM, Barefoot JC, Grichnik K, Helms MJ, Kuhn CM, Lewis JG, Schanberg SM, Stafford-Smith M, Suarez EC, Clary GL, Svenson IK, Siegler IC (2003) Serotonin-related gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology 28(3):533–541CrossRefPubMedGoogle Scholar
  93. Zahnley T, Macey R, Oster G (2001) Berkeley Madonna (Version 8.0.1) [Computer software]. University of California, BerkeleyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of MathematicsBlack Hills State UniversitySpearfishUSA

Personalised recommendations