Advertisement

Behavior Genetics

, Volume 40, Issue 2, pp 146–156 | Cite as

White Matter Integrity in the Splenium of the Corpus Callosum is Related to Successful Cognitive Aging and Partly Mediates the Protective Effect of an Ancestral Polymorphism in ADRB2

  • Lars Penke
  • Susana Muñoz Maniega
  • Lorna M. Houlihan
  • Catherine Murray
  • Alan J. Gow
  • Jonathan D. Clayden
  • Mark E. Bastin
  • Joanna M. Wardlaw
  • Ian J. Deary
Original Research

Abstract

It has recently been reported that the evolutionarily ancestral alleles of two functional polymorphisms in the β2-adrenergic receptor gene (ADRB2) were related to higher cognitive ability in the 70 year old participants of the Lothian Birth Cohort 1936 (LBC1936). One emerging important factor in cognitive aging is the integrity of white matter tracts in the brain. Here, we used diffusion tensor MRI-based tractography to assess the integrity of eight white matter tracts in a subsample of the LBC1936. Higher integrity of the splenium of the corpus callosum predicted better cognitive ability in old age, even after controlling for IQ at age 11. Also, the ancestral allele of one ADRB2 SNP was associated with both splenium integrity and better cognitive aging. While the effects of the SNP and splenium integrity on cognitive aging were largely independent, there was some evidence for a partial mediation effect of ADRB2 status via splenium integrity.

Keywords

Cognitive aging Diffusion tensor MRI White matter tractography Splenium corpus callosum ADRB2 Comparative genomics 

Notes

Acknowledgments

LP, SMM and CM are funded by the UK Medical Research Council. LP, AJG, and the LBC1936 data collection were supported by the Disconnected Mind project (www.disconnectedmind.ed.ac.uk) funded by Help the Aged and Research into Ageing. JMW is part-funded by the Scottish Funding Council as part of the SINAPSE Collaboration. We thank the study secretary Paula Davies, Janie Corley and Ross Henderson for data collection and data entry; the nurses, radiographers and other staff at the Wellcome Trust Clinical Research Facility and the SFC Brain Imaging Research Centre (www.sbirc.ed.ac.uk) where the data were collected; and the staff at Lothian Health Board and at the SCRE Centre, University of Glasgow. The work was undertaken within The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative. Funding from the BBSRC, EPSRC, ESRC and MRC is gratefully acknowledged.

References

  1. Abe O, Aoki S, Hayashi N, Yamada H, Kunimatsu A, Mori H et al (2002) Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol Aging 23:433–441CrossRefPubMedGoogle Scholar
  2. Allin M, Nosarti C, Narberhaus A, Walshe M, Frearson S, Kalpakidou A et al (2007) Growth of the corpus callosum in adolescents born preterm. Arch Pediatr Adolesc Med 161:1183–1189CrossRefPubMedGoogle Scholar
  3. Banich MT (1998) The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn 36:128–157CrossRefPubMedGoogle Scholar
  4. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51:1173–1182CrossRefPubMedGoogle Scholar
  5. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMedGoogle Scholar
  6. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219CrossRefPubMedGoogle Scholar
  7. Basser PJ, Mattiello J, Le Bihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267CrossRefPubMedGoogle Scholar
  8. Bastin ME, Piatkowski JP, Storkey AJ, Brown LJ, Maclullich AM, Clayden JD (2008) Tract shape modelling provides evidence of topological change in corpus callosum genu during normal ageing. Neuroimage 43:20–28CrossRefPubMedGoogle Scholar
  9. Bastin ME, Clayden JD, Pattie A, Gerrish IF, Wardlaw JM, Deary IJ (2009) Diffusion tensor and magnetization transfer MRI measurements of periventricular white matter hyperintensities in old age. Neurobiol Aging 30:125–136CrossRefPubMedGoogle Scholar
  10. Bates TC, Luciano M, Lind PA, Wright MJ, Montgomery GW, Martin NG (2008) Recently-derived variants of brain-size genes ASPM, MCPH1, CDK5RAP and BRCA1 not associated with general cognition, reading or language. Intelligence 36:689–693CrossRefGoogle Scholar
  11. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 15:435–455CrossRefPubMedGoogle Scholar
  12. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155CrossRefPubMedGoogle Scholar
  13. Bhagat YA, Beaulieu C (2004) Diffusion anisotropy in subcortical white matter and cortical gray matter: changes with aging and the role of CSF-suppression. J Magn Reson Imaging 20:216–227CrossRefPubMedGoogle Scholar
  14. Bochdanovits Z, Gosso FM, van den Berg L, Rizzu P, Polderman T, Pardo L et al (2009) A functional polymorphism under positive evolutionary selection in ADRB2 is associated with human intelligence with opposite effects in the young and the elderly. Behav Genet 39:15–23CrossRefPubMedGoogle Scholar
  15. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100CrossRefPubMedGoogle Scholar
  16. Cagliani R, Fumagalli M, Pozzoli U, Riva S, Comi GP, Torri F et al (2009) Diverse evolutionary histories for beta-adrenoreceptor genes in humans. Am J Hum Genet 85:64–75CrossRefPubMedGoogle Scholar
  17. Chepuri NB, Yen YF, Burdette JH, Li H, Moody DM, Maldjian JA (2002) Diffusion anisotropy in the corpus callosum. AJNR Am J Neuroradiol 23:803–808PubMedGoogle Scholar
  18. Cheslack-Postava K, Fallin MD et al (2007) Beta2-Adrenergic receptor gene variants and risk for autism in the AGRE cohort. Mol Psychiatry 12:283–291PubMedGoogle Scholar
  19. Clayden JD, Clark CA (2009) Model-based streamline rejection for probabilistic tractography. In: Proceedings of the ISMRM 17th scientific meeting and exhibitionGoogle Scholar
  20. Clayden JD, Storkey AJ, Bastin ME (2007) A probabilistic model-based approach to consistent white matter tract segmentation. IEEE Trans Med Imaging 26:1555–1561CrossRefPubMedGoogle Scholar
  21. Clayden JD, Storkey AJ, Muñoz Maniega S, Bastin ME (2009) Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach. Neuroimage 45:377–385CrossRefPubMedGoogle Scholar
  22. Cockcroft JR, Gazis AG, Cross DJ, Wheatley A, Dewar J, Hall IP, Noon JP (2000) ß2-adrenoceptor polymorphism determines vascular reactivity in humans. Hypertension 36:371–375PubMedGoogle Scholar
  23. Scottish Council for Research in Education (1949) The trend of Scottish intelligence: a comparison of the 1947 and 1932 surveys of the intelligence of eleven-year-old pupils. University of London Press, LondonGoogle Scholar
  24. De Keyser J, Steen C, Mostert JP, Koch MW (2008) Hypoperfusion of the cerebral white matter in multiple sclerosis: possible mechanisms and pathophysiological significance. J Cereb Blood Flow Metab 28:1645–1651CrossRefPubMedGoogle Scholar
  25. Deary IJ, Wright AF, Harris SE, Whalley LJ, Starr JM (2004) Searching for genetic influences on normal cognitive ageing. Trends Cogn Sci 8:178–184CrossRefPubMedGoogle Scholar
  26. Deary IJ, Bastin ME, Pattie A, Clayden JD, Whalley LJ, Starr JM et al (2006) White matter integrity and cognition in childhood and old age. Neurology 66:505–512CrossRefPubMedGoogle Scholar
  27. Deary IJ, Gow AJ, Taylor MD, Corley J, Brett C, Wilson V et al (2007) The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatr 7:28CrossRefPubMedGoogle Scholar
  28. Deary IJ, Corley J, Gow AJ, Harris SE, Houlihan LM, Marioni RE et al (2009a) Age-associated cognitive decline. Br Med Bull 92:135–152CrossRefPubMedGoogle Scholar
  29. Deary IJ, Johnson W, Houlihan LM (2009b) Genetic foundations of human intelligence. Hum Genet 126:215–232CrossRefPubMedGoogle Scholar
  30. Dennis N, Cabeza RC (2008) Neuroimaging of healthy cognitive aging. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition, 3rd edn. Psychology Press, New York, pp 1–54Google Scholar
  31. Diatchenko L, Anderson AD, Slade GD, Fillingim RB, Shabalina SA et al (2006) Three major haplotypes of the β2 adrenergic receptor define psychological profile, blood pressure, and the risk for development of a common musculoskeletal pain disorder. Am J Med Genet 141B:449–462CrossRefPubMedGoogle Scholar
  32. Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM et al (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309:1717–1720. doi: 10.1126/science.1113722 CrossRefPubMedGoogle Scholar
  33. Flint J, Munafò MR (2007) The endophenotype concept in psychiatric genetics. Psychol Med 37:163–180CrossRefPubMedGoogle Scholar
  34. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefPubMedGoogle Scholar
  35. Gjesing AP, Andersen G, Burgdorf KS, Borch-Johnsen K, Jørgensen T, Hansen T, Pedersen O (2007) Studies of the associations between functional beta2-adrenergic receptor variants and obesity, hypertension and type 2 diabetes in 7, 808 white subjects. Diabetologia 50:563–568CrossRefPubMedGoogle Scholar
  36. Green AE, Munafò MR, DeYoung CG, Fossella JA, Fan J, Gray JR (2008) Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nat Rev Neurosci 9:710–720CrossRefPubMedGoogle Scholar
  37. Harris EE (2008) Searching the genome for our adaptations. Evol Anthropol 17:146–157CrossRefGoogle Scholar
  38. Harsan LA, Poulet P, Guignard B, Steibel J, Parizel N, de Sousa PL, Boehm N, Grucker D, Ghandour MS (2006) Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging. J Neurosci Res 83:392–402CrossRefPubMedGoogle Scholar
  39. Hasegawa I (2000) Neural mechanisms of memory retrieval: role of the prefrontal cortex. Rev Neurosci 11:113–125PubMedGoogle Scholar
  40. Head D, Buckner RL, Shimony JS, Girton LE, Akbudak E, Conturo TE et al (2004) Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 14:410–423CrossRefPubMedGoogle Scholar
  41. Hofer SM, Sliwinski MJ (2001) Understanding ageing: an evaluation of research designs for assessing the interdependence of ageing-related changes. Gerontology 47:341–352CrossRefPubMedGoogle Scholar
  42. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich D, Calabresi P, Pekar J, van Zijl P, Mori S (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39:336–347CrossRefPubMedGoogle Scholar
  43. Hutchinson AD, Mathias JL, Jacobson BL, Ruzic L, Bond AN, Banich MT (2009) Relationship between intelligence and the size and composition of the corpus callosum. Exp Brain Res 192:455–464CrossRefPubMedGoogle Scholar
  44. Johnson M (2006) Molecular mechanisms of β2-adrenergic receptor function, response, and regulation. J Allergy Clin Immunol 117:18–24CrossRefPubMedGoogle Scholar
  45. Jung RE, Haier RJ (2007) The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30:135–154CrossRefPubMedGoogle Scholar
  46. Keller MC, Miller GF (2006a) Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best? Behav Brain Sci 29:385–452PubMedGoogle Scholar
  47. Keller MC, Miller GF (2006b) An evolutionary framework for mental disorders: integrating adaptationist and evolutionary genetic models. Behav Brain Sci 29:429–441Google Scholar
  48. Kennedy KM, Raz N (2009) Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia 47:916–927CrossRefPubMedGoogle Scholar
  49. Kidd KK (2009) ALFRED—the ALlele FREquency Database. Retrieved 7 Feb 2009, from http://alfred.med.yale.edu
  50. Luders E, Narr KL, Bilder RM, Thompson PM, Szeszko PR, Hamilton L et al (2007) Positive correlations between corpus callosum thickness and intelligence. Neuroimage 37:1457–1464CrossRefPubMedGoogle Scholar
  51. Madden DJ, Whiting WL, Huettel SA, White LE, MacFall JR, Provenzale JM (2004) Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage 21:1174–1181CrossRefPubMedGoogle Scholar
  52. Madden DJ, Spaniol J, Costello MC, Bucur B, White LE, Cabeza R, Davis SW, Dennis NA, Provenzale JM, Huettel SA (2008) Cerebral white matter integrity mediates adult age differences in cognitive performance. J Cogn Neurosci 21:289–302CrossRefGoogle Scholar
  53. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753CrossRefPubMedGoogle Scholar
  54. Mattay VS, Goldberg TE, Sambataro F, Weinberger DR (2008) Neurobiology of cognitive aging: insights from imaging genetics. Biol Psychol 79:9–22CrossRefPubMedGoogle Scholar
  55. McDaniel MA (2005) Big-brained people are smarter: a meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33:337–346CrossRefGoogle Scholar
  56. Mekel-Bobrov N, Gilbert SL, Evans PD, Vallender EJ, Anderson JR, Hudson RR et al (2005) Ongoing adaptive evolution of ASPM, a brain size determinant in homo sapiens. Science 309:1720–1722. doi: 10.1126/science.1116815 CrossRefPubMedGoogle Scholar
  57. Mekel-Bobrov N, Posthuma D, Gilbert SL, Lind P, Gosso MF, Luciano M et al (2007) The ongoing adaptive evolution of ASPM and microcephalin is not explained by increased intelligence. Hum Mol Genet 16:600–608. doi: 10.1093/hmg/ddl487 CrossRefPubMedGoogle Scholar
  58. Miller GF, Penke L (2007) The evolution of human intelligence and the coefficient of additive genetic variance in human brain size. Intelligence 35:97–114CrossRefGoogle Scholar
  59. Muñoz Maniega S, Bastin ME, McIntosh A, Lawrie S, Clayden JD (2008) Atlas-based reference tracts improve automatic white matter segmentation with neighbourhood tractography. In: Proceedings of the ISMRM 16th scientific meeting and exhibition, p 3318Google Scholar
  60. O’Sullivan M, Jones DK, Summers PE, Morris RG, Williams SCR, Markus HS (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57:632–638PubMedGoogle Scholar
  61. O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SCR, Markus HS (2004) Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 75:441–447CrossRefPubMedGoogle Scholar
  62. Ota M, Obata T, Akine Y, Ito H, Ikehira H, Asada T et al (2006) Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage 31:1445–1452CrossRefPubMedGoogle Scholar
  63. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196CrossRefPubMedGoogle Scholar
  64. Penke L, Denissen JJA, Miller GF (2007a) The evolutionary genetics of personality. Eur J Pers 21:549–587CrossRefGoogle Scholar
  65. Penke L, Denissen JJA, Miller GF (2007b) Evolution, genes, and inter-disciplinary personality research. Eur J Pers 21:639–665CrossRefGoogle Scholar
  66. Pfefferbaum A, Sullivan EV (2003) Increased brain white matter diffusivity in normal adult aging: relationship to anisotropy and partial voluming. Magn Reson Med 49:953–961CrossRefPubMedGoogle Scholar
  67. Pfefferbaum A, Sullivan EV, Hedehus M, Lim KO, Adalsteinsson E, Moseley M (2000) Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 44:259–268CrossRefPubMedGoogle Scholar
  68. Pfefferbaum A, Adalsteinsson E, Sullivan EV (2005) Frontal circuitry degradation marks healthy adult aging: evidence from diffusion tensor imaging. Neuroimage 26:891–899CrossRefPubMedGoogle Scholar
  69. Pinelli M, Giacchetti M, Acquaviva F, Cocozza S, Donnarumma G, Lapice E, Riccardi G, Romano G, Vaccaro O, Monticelli A (2006) Beta2-adrenergic receptor and UCP3 variants modulate the relationship between age and type 2 diabetes mellitus. BMC Med Genet 7:85CrossRefPubMedGoogle Scholar
  70. Purcell S, Neale B et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedGoogle Scholar
  71. Roff DA, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20:433–447CrossRefPubMedGoogle Scholar
  72. Salat DH, Tuch DS, Greve DN, van der Kouwe AJW, Hevelone ND, Zaleta AK et al (2005) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26:1215–1227CrossRefPubMedGoogle Scholar
  73. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436CrossRefPubMedGoogle Scholar
  74. Stanzione R, Di Angelantonio E, Evangelista A, Barbato D, Marchitti S, Zanda B, Pirisi A, Quarta G, Volpe M, Rubattu S (2007) Beta2-adrenergic receptor gene polymorphisms and risk of ischemic stroke. Am J Hypertens 20:657–662CrossRefPubMedGoogle Scholar
  75. Sullivan EV, Pfefferbaum A (2006) Diffusion tensor imaging and aging. Neurosci Biobehav Rev 30:749–761CrossRefPubMedGoogle Scholar
  76. Sullivan EV, Adalsteinsson E, Hedehus M, Ju C, Moseley M, Lim KO et al (2001) Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport 12:99–104CrossRefPubMedGoogle Scholar
  77. Sullivan EV, Adalsteinsson E, Pfefferbaum A (2006) Selective age-related degradation of anterior callosal fiber bundles quantified in vivowith fiber tracking. Cereb Cortex 16:1030–1039CrossRefPubMedGoogle Scholar
  78. Thomas PD, Kejariwal A (2004) Coding single-nucleotide polymorphisms associated with complex vs. Mendelian disease: evolutionary evidence for differences in molecular effects. Proc Natl Acad Sci USA 101:15398–15403CrossRefPubMedGoogle Scholar
  79. Tyszka JM, Readhead C, Bearer EL, Pautler RG, Jacobs RE (2006) Statistical diffusion tensor histology reveals regional dysmyelination effects in the shiverer mouse mutant. Neuroimage 29:1058–1065CrossRefPubMedGoogle Scholar
  80. Wechsler D (1998) WAIS-IIIUK administration and scoring manual. Psychological Corporation, LondonGoogle Scholar
  81. Woods RP, Freimer NB, De Young JA, Fears SC, Sicotte NL, Service SK et al (2006) Normal variants of Microcephalin and ASPM do not account for brain size variability. Hum Mol Genet 15:2025–2029CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lars Penke
    • 1
  • Susana Muñoz Maniega
    • 2
    • 3
  • Lorna M. Houlihan
    • 1
  • Catherine Murray
    • 4
  • Alan J. Gow
    • 1
  • Jonathan D. Clayden
    • 5
  • Mark E. Bastin
    • 2
    • 6
  • Joanna M. Wardlaw
    • 2
    • 3
  • Ian J. Deary
    • 1
  1. 1.Centre for Cognitive Ageing and Cognitive Epidemiology, Department of PsychologyThe University of EdinburghEdinburghUK
  2. 2.Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
  3. 3.Department of Clinical NeurosciencesThe University of EdinburghEdinburghUK
  4. 4.Department of PsychologyThe University of EdinburghEdinburghUK
  5. 5.Institute of Child HealthUniversity College LondonLondonUK
  6. 6.Department of Medical and Radiological Sciences (Medical Physics)The University of EdinburghEdinburghUK

Personalised recommendations