Behavior Genetics

, Volume 39, Issue 5, pp 541–553 | Cite as

Characterization of Quantitative Trait Loci for the Age of First Foraging in Honey Bee Workers

Original Research

Abstract

Identifying the basis of quantitative trait loci (QTL) remains challenging for the study of complex traits, such as behavior. The honey bee is a good model combining interesting social behavior with a high recombination rate that facilitates this identification. Several studies have focused on the pollen hoarding syndrome, identifying multiple QTL as the genetic basis of its behavioral components. One component, the age of first foraging, is central for colony organization and four QTL were previously described without identification of their genomic location. Enabled by the honey bee genome project, this study provides data from multiple experiments to scrutinize these QTL, including individual and pooled SNP mapping, sequencing of AFLP markers, and microsatellite genotyping. The combined evidence confirms and localizes two of the previous QTL on chromosome four and five, dismisses the other two, and suggests one novel genomic region on chromosome eleven to influence the age of first foraging. Among the positional candidates the Ank2, PKC, Erk7, and amontillado genes stand out due to corroborating functional evidence. This study thus demonstrates the power of combined, genome-based approaches to enable targeted studies of a manageable set of candidate genes for natural behavioral variation in the important, complex social trait “age of first foraging”.

Keywords

Genetic architecture Complex traits Social insects Life history Division of labor Behavioral ontogeny AFLP Foraging onset 

Notes

Acknowledgments

I would like to thank Robert Page (ASU) for breeding and providing the original mapping populations, as well as allowing me to use the software MapQTL, Charlie Whitfield (UIUC) for practical assistance with the pooled SNP genotyping and providing his raw data to enable my analyses, and Greg Hunt (Purdue), Michael Munday (UNCG) and Patrick Nolan (UNCG) for advice and help regarding the analysis of candidate genes. Two careful reviewers significantly improved the quality of this manuscript. Practical help was provided by Kim Fondrk (UCD) and Meredith Humphries (UCD) with cloning the AFLP fragments, and Jackie Metheny (UNCG) and Emily Meznar (UNCG) with microsatellite genotyping. Financial support was provided by NSF (#0615502) and NIH (NIA PO1 AG22500).

References

  1. Adams HA, Southey BR, Robinson GE, Rodriguez-Zas SL (2008) Meta-analysis of genome-wide expression patterns associated with behavioral maturation in honey bees. BMC Genomics 9:503. doi:10.1186/1471-2164-9-503 PubMedCrossRefGoogle Scholar
  2. Amdam GV, Csondes A, Fondrk MK, Page RE Jr (2006) Complex social behaviour derived from maternal reproductive traits. Nature 439:76–78. doi:10.1038/nature04340 PubMedCrossRefGoogle Scholar
  3. Ammons AD, Hunt GJ (2008) Identification of quantitative trait loci and candidate genes influencing ethanol sensitivity in honey bees. Behav Genet 38:531–553. doi:10.1007/s10519-008-9218-z PubMedCrossRefGoogle Scholar
  4. Arechavaleta-Velasco ME, Hunt GJ (2004) Binary trait loci that influence honey bee (Hymenoptera:Apidae) guarding behavior. Ann Entomol Soc Am 97:177–183. doi:10.1603/0013-8746(2004)097[0177:BTLTIH]2.0.CO;2 CrossRefGoogle Scholar
  5. Barchuk AR, Cristino AS, Kucharski R, Costa LF, Simoes ZLP, Maleszka R (2007) Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev Biol 7:70PubMedCrossRefGoogle Scholar
  6. Barron AB, Schulz DJ, Robinson GE (2002) Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Physiol [A] 188:603–610. doi:10.1007/s00359-002-0335-5 CrossRefGoogle Scholar
  7. Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of gene action across different time scales on behavior. Science 296:741–744. doi:10.1126/science.1069911 PubMedCrossRefGoogle Scholar
  8. Ben-Shahar Y, Dudek NL, Robinson GE (2004) Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. J Exp Biol 207:3281–3288. doi:10.1242/jeb.01151 PubMedCrossRefGoogle Scholar
  9. Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF, Schlipalius D, Mougel F, Emore C, Rueppell O, Sirvio A, Guzman-Novoa E, Hunt G, Solignac M, Page RE (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16:1339–1344. doi:10.1101/gr.5680406 PubMedCrossRefGoogle Scholar
  10. Chandra SBC, Hunt GJ, Cobey S, Smith BH (2001) Quantitative trait loci associated with reversal learning and latent inhibition in honeybees (Apis mellifera). Behav Genet 31:275–285. doi:10.1023/A:1012227308783 PubMedCrossRefGoogle Scholar
  11. Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila models of human disease. Nat Genet 39:715–720. doi:10.1038/ng2049 PubMedCrossRefGoogle Scholar
  12. Darvasi A, Soller M (1994) Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138:1365–1373PubMedGoogle Scholar
  13. Fahrbach SE, Moore D, Capaldi EA, Farris SM, Robinson GE (1998) Experience-expectant plasticity in the mushroom bodies of the honeybee. Learn Mem 5:115–123PubMedGoogle Scholar
  14. Farooqui T (2007) Octopamine-mediated neuromodulation of insect senses. Neurochem Res 32:1511–1529. doi:10.1007/s11064-007-9344-7 PubMedCrossRefGoogle Scholar
  15. Gort G, Koopman WJM, Stein A (2006) Fragment length distributions and collision probabilities for AFLP markers. Biometrics 62:1107–1115. doi:10.1111/j.1541-0420.2006.00613.x PubMedCrossRefGoogle Scholar
  16. Hall JC, Alahiotis SN, Strumpf DA, White K (1980) Behavioral and biochemical defects in temperature sensitive acetylcholinesterase mutants of Drosophila melanogaster. Genetics 96:939–965PubMedGoogle Scholar
  17. Homyk T, Sheppard DE (1977) Behavioral mutants of Drosophila melanogaster. 1. Isolation and mapping of mutations which decrease flight ability. Genetics 87(9):5–104Google Scholar
  18. Honeybee Genome Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949. doi:10.1038/nature05260 CrossRefGoogle Scholar
  19. Honjo K, Furukubo-Tokunaga K (2005) Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 25:7905–7913. doi:10.1523/JNEUROSCI.2135-05.2005 PubMedCrossRefGoogle Scholar
  20. Hoogendoorn B, Norton N, Kirov G, Williams N, Hamshere ML, Spurlock G, Austin J, Stephens MK, Buckland PR, Owen MJ, O’Donovan MC (2000) Cheap, accurate and rapid allele frequency estimation of single nucleotide polymorphisms by primer extension and DHPLC in DNA pools. Hum Genet 107:488–493. doi:10.1007/s004390000397 PubMedCrossRefGoogle Scholar
  21. Humphries MA, Muller U, Fondrk MK, Page RE Jr (2003) PKA and PKC content in the honey bee central brain differs in genotypic strains with distinct foraging behavior. J Comp Physiol [A] 189:555–562. doi:10.1007/s00359-003-0433-z CrossRefGoogle Scholar
  22. Humphries MA, Fondrk MK, Page RE Jr (2005) Locomotion and the pollen hoarding behavioral syndrome of the honeybee (Apis mellifera L.). J Comp Physiol [A] 191:669–674. doi:10.1007/s00359-005-0624-x CrossRefGoogle Scholar
  23. Hunt GJ, Page RE Jr, Fondrk MK, Dullum CJ (1995) Major quantitative trait loci affecting honey bee foraging behavior. Genetics 141:1537–1545PubMedGoogle Scholar
  24. Hunt GJ, Guzman-Novoa E, Fondrk MK, Page RE Jr (1998) Quantitative trait loci for honey bee stinging behavior and body size. Genetics 148:1203–1213PubMedGoogle Scholar
  25. Hunt GJ, Amdam GV, Schlipalius D, Emore C, Sardesai N, Williams CE, Rueppell O, Guzman-Novoa E, Arechavaleta-Velasco M, Chandra S, Fondrk MK, Beye M, Page RE Jr (2007) Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94:247–267. doi:10.1007/s00114-006-0183-1 PubMedCrossRefGoogle Scholar
  26. Koch I, Schwarz H, Beuchle D, Goellner B, Langegger M, Aberle H (2008) Drosophila ankyrin 2 is required for synaptic stability. Neuron 58:210–222. doi:10.1016/j.neuron.2008.03.019 PubMedCrossRefGoogle Scholar
  27. Korol A, Frenkel Z, Cohen L, Lipkin E, Soller M (2007) Fractioned DNA pooling: a new cost-effective strategy for fine mapping of quantitative trait loci. Genetics 176:2611–2623. doi:10.1534/genetics.106.070011 PubMedCrossRefGoogle Scholar
  28. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  29. Lapidge KL, Oldroyd BP, Spivak M (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89:565–568PubMedGoogle Scholar
  30. Lattorff HMG, Moritz RFA, Crewe RM, Solignac M (2007) Control of reproductive dominance by the thelytoky gene in honeybees. Biol Lett 3:292–295. doi:10.1098/rsbl.2007.0083 PubMedCrossRefGoogle Scholar
  31. Le Conte Y, Hefetz A (2008) Primer pheromones in social hymenoptera. Annu Rev Entomol 53:523–542. doi:10.1146/annurev.ento.52.110405.091434 PubMedCrossRefGoogle Scholar
  32. Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP version 3.0: a tutorial and reference manual. In: A whitehead institute for biomedical research technical report, Cambridge, MAGoogle Scholar
  33. Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339. doi:10.1146/annurev.genet.35.102401.090633 PubMedCrossRefGoogle Scholar
  34. Nelson CM, Ihle KE, Fondrk MK, Page RE Jr, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5:e62. doi:10.1371/journal.pbio.0050062 PubMedCrossRefGoogle Scholar
  35. Oxley PR, Thompson GJ, Oldroyd BP (2008) Four quantitative trait loci that influence worker sterility in the honeybee (Apis mellifera). Genetics 179:1337–1343. doi:10.1534/genetics.108.087270 PubMedCrossRefGoogle Scholar
  36. Page RE Jr, Amdam GV (2007) The making of a social insect: developmental architectures of social design. BioEssays 29:334–343. doi:10.1002/bies.20549 PubMedCrossRefGoogle Scholar
  37. Page RE Jr, Erber J (2002) Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 89:91–106. doi:10.1007/s00114-002-0299-x PubMedCrossRefGoogle Scholar
  38. Page RE Jr, Fondrk MK (1995) The effects of colony level selection on the social organization of honey bee (Apis mellifera L.) colonies—colony level components of pollen hoarding. Behav Ecol Sociobiol 36:135–144. doi:10.1007/BF00170718 CrossRefGoogle Scholar
  39. Page RE Jr, Fondrk MK, Hunt GJ, Guzman-Novoa E, Humphries MA, Nguyen K, Greene AS (2000) Genetic dissection of honeybee (Apis mellifera L.) foraging behavior. J Hered 91:474–479. doi:10.1093/jhered/91.6.474 PubMedCrossRefGoogle Scholar
  40. Page RE Jr, Gadau J, Beye M (2002) The emergence of hymenopteran genetics. Genetics 160:375–379PubMedGoogle Scholar
  41. Pankiw T (2003) Directional change in a suite of foraging behaviors in tropical and temperate evolved honey bees (Apis mellifera L.). Behav Ecol Sociobiol 54:458–464. doi:10.1007/s00265-003-0640-1 CrossRefGoogle Scholar
  42. Phillips PC (1999) From complex traits to complex alleles. Trends Genet 15:6–8. doi:10.1016/S0168-9525(98)01622-9 PubMedCrossRefGoogle Scholar
  43. Ragoussis J, Elvidge GP, Kaur K, Colella S (2006) Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research. PLOS Genet 2:920–929. doi:10.1371/journal.pgen.0020100 CrossRefGoogle Scholar
  44. Rayburn LYM, Gooding HC, Choksi SP, Maloney D, Kidd AR, Siekhaus DE, Bender M (2003) amontillado, the Drosophila homolog of the prohormone processing protease PC2, is required during embryogenesis and early larval development. Genetics 163:227–237PubMedGoogle Scholar
  45. Robinson GE (2002) Genomics and integrative analyses of division of labor in honeybee colonies. Am Nat 160:S160–S172. doi:10.1086/342901 PubMedCrossRefGoogle Scholar
  46. Robinson GE, Huang Z-Y (1998) Colony integration in honey bees: genetic, endocrine and social control of division of labor. Apidology 29:159–170. doi:10.1051/apido:19980109 CrossRefGoogle Scholar
  47. Robinson GE, Fernald RD, Clayton DF (2008) Genes and social behavior. Science 322:896–900. doi:10.1126/science.1159277 PubMedCrossRefGoogle Scholar
  48. Rueppell O, Pankiw T, Nielson DI, Fondrk MK, Beye M, Page RE Jr (2004) The genetic architecture of the behavioral ontogeny of foraging in honey bee workers. Genetics 167:1767–1779. doi:10.1534/genetics.103.021949 PubMedCrossRefGoogle Scholar
  49. Rueppell O, Chandra SBC, Pankiw T, Fondrk MK, Beye M, Hunt GJ, Page RE Jr (2006a) The genetic architecture of sucrose responsiveness in the honey bee (Apis mellifera L.). Genetics 172:243–251. doi:10.1534/genetics.105.046490 PubMedCrossRefGoogle Scholar
  50. Rueppell O, Page RE Jr, Fondrk MK (2006b) Male behavioural maturation rate responds to selection on pollen hoarding in honeybees. Anim Behav 71:227–234. doi:10.1016/j.anbehav.2005.05.008 PubMedCrossRefGoogle Scholar
  51. Rueppell O, Bachelier C, Fondrk MK, Page RE Jr (2007) Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Exp Gerontol 42:1020–1032. doi:10.1016/j.exger.2007.06.002 PubMedCrossRefGoogle Scholar
  52. Rueppell O, Linford R, Gardner P, Coleman J, Fine K (2008) Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 62:1621–1631. doi:10.1007/s00265-008-0591-7 PubMedCrossRefGoogle Scholar
  53. Rüppell O, Pankiw T, Page RE Jr (2004) Pleiotropy, epistasis and new QTL: the genetic architecture of honey bee foraging behavior. J Hered 95:481–491. doi:10.1093/jhered/esh072 PubMedCrossRefGoogle Scholar
  54. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi:10.1038/72708 PubMedCrossRefGoogle Scholar
  55. Schug MD, Regulski EE, Pearce A, Smith SG (2004) Isolation and characterization of dinucleotide repeat microsatellites in Drosophila ananassae. Genet Res 83:19–29. doi:10.1017/S0016672303006542 PubMedCrossRefGoogle Scholar
  56. Schulz DJ, Huang ZY, Robinson GE (1998) Effects of colony food shortage on behavioral development in honey bees. Behav Ecol Sociobiol 42:295–303. doi:10.1007/s002650050442 CrossRefGoogle Scholar
  57. Sen-Sarma M, Whitfield CW, Robinson GE (2007) Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees. BMC Genomics 8:202. doi:10.1186/1471-2164-8-202 PubMedCrossRefGoogle Scholar
  58. Shapira M, Thompson CK, Soreq H, Robinson GE (2001) Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies. J Mol Neurosci 17:1–12. doi:10.1385/JMN:17:1:1 PubMedCrossRefGoogle Scholar
  59. Solignac M, Mougel F, Vautrin D, Monnerot M, Cornuet JM (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol 8:R66. doi:10.1186/gb-2007-8-4-r66 PubMedCrossRefGoogle Scholar
  60. Sullivan JP, Jassim O, Fahrbach SE, Robinson GE (2000) Juvenile hormone paces behavioral development in the adult worker honey bee. Horm Behav 37:1–14. doi:10.1006/hbeh.1999.1552 PubMedCrossRefGoogle Scholar
  61. Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:research0088.1–research0088.14CrossRefGoogle Scholar
  62. Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0, software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  63. Vasemagi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14:3623–3642. doi:10.1111/j.1365-294X.2005.02690.x PubMedCrossRefGoogle Scholar
  64. Wang Y, Amdam GV, Rueppell O, Wallrichs M, Fondrk MK, Kaftanoglu O, Page RE Jr (2009) PDK1 and HR46 gene homologs tie social behavior to ovary signals. PLoS ONE 4:e4899. doi:10.1371/journal.pone.0004899
  65. Wayne ML, McIntyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA 99:14903–14906. doi:10.1073/pnas.222549199 PubMedCrossRefGoogle Scholar
  66. Whitfield CW, Cziko A-M, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299. doi:10.1126/science.1086807 PubMedCrossRefGoogle Scholar
  67. Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006a) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645. doi:10.1126/science.1132772 PubMedCrossRefGoogle Scholar
  68. Whitfield CW, Ben-Shahar Y, Brillet C, Leoncini I, Crauser D, LeConte Y, Rodriguez-Zas S, Robinson GE (2006b) Genomic dissection of behavioral maturation in the honey bee. Proc Natl Acad Sci USA 103:16068–16075. doi:10.1073/pnas.0606909103 PubMedCrossRefGoogle Scholar
  69. Wilson RJ, Goodman JL, Strelets VB, FlyBase Consortium (2008) FlyBase: integration and improvements to query tools. Nucleic Acids Res 36:D588–D593. doi:10.1093/nar/gkm930 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of BiologyUniversity of North Carolina at GreensboroGreensboroUSA

Personalised recommendations