Behavior Genetics

, Volume 39, Issue 5, pp 513–523

No Association Between Cholinergic Muscarinic Receptor 2 (CHRM2) Genetic Variation and Cognitive Abilities in Three Independent Samples

  • Penelope A. Lind
  • Michelle Luciano
  • Michael A. Horan
  • Riccardo E. Marioni
  • Margaret J. Wright
  • Timothy C. Bates
  • Patrick Rabbitt
  • Sarah E. Harris
  • Yvonne Davidson
  • Ian J. Deary
  • Linda Gibbons
  • Andrew Pickles
  • William Ollier
  • Neil Pendleton
  • Jackie F. Price
  • Antony Payton
  • Nicholas G. Martin
Original Research

Abstract

Cognitive ability has a substantial genetic component and more than 15 candidate genes have been identified over the past 8 years. One gene that has been associated with general cognitive ability is the cholinergic muscarinic 2 receptor (CHRM2). In an attempt to replicate this finding we typed marker rs8191992 (the originally reported CHRM2 SNP) in two population based cohorts—one Scottish aged over 50 years (N = 2,091) and the other English comprising non-demented elderly participants (N = 758)—and a family-based Australian adolescent sample (N = 1,537). An additional 29 SNPs in CHRM2 were typed in the Australian sample and a further seven in the English cohort. No significant association was found between CHRM2 and diverse measures of cognitive ability in any of the samples. In conclusion, this study does not support a role for CHRM2 in cognitive ability.

Keywords

Association analyses CHRM2 Cognitive ability Genetics Intelligence 

References

  1. Abecasis GR, Cardon LR, Cookson WO (2000a) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292. doi:10.1086/302698 PubMedCrossRefGoogle Scholar
  2. Abecasis GR, Cookson WO, Cardon LR (2000b) Pedigree tests of transmission disequilibrium. Eur J Hum Genet 8:545–551. doi:10.1038/sj.ejhg.5200494 PubMedCrossRefGoogle Scholar
  3. Abecasis GR, Ghosh D, Nichols TE (2005) Linkage disequilibrium: ancient history drives the new genetics. Hum Hered 59:118–124. doi:10.1159/000085226 PubMedCrossRefGoogle Scholar
  4. Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541. doi:10.1111/j.1471-4159.1992.tb09752.x PubMedCrossRefGoogle Scholar
  5. Barnett JH, Heron J, Ring SM, Golding J, Goldman D, Xu K, Jones PB (2007) Gender-specific effects of the catechol-O-methyltransferase Val108/158Met polymorphism on cognitive function in children. Am J Psychiatry 164:142–149. doi:10.1176/appi.ajp.164.1.142 PubMedCrossRefGoogle Scholar
  6. Barnett JH, Scoriels L, Munafo MR (2008) Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry 64:137–144. doi:10.1016/j.biopsych.2008.01.005 PubMedCrossRefGoogle Scholar
  7. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England) 21:263–265. doi:10.1093/bioinformatics/bth457 CrossRefGoogle Scholar
  8. Bouchard TJ Jr, McGue M (2003) Genetic and environmental influences on human psychological differences. J Neurobiol 54:4–45. doi:10.1002/neu.10160 PubMedCrossRefGoogle Scholar
  9. Bruder GE, Keilp JG, Xu H, Shikhman M, Schori E, Gorman JM, Gilliam TC (2005) Catechol-O-methyltransferase (COMT) genotypes and working memory: associations with differing cognitive operations. Biol Psychiatry 58:901–907. doi:10.1016/j.biopsych.2005.05.010 PubMedCrossRefGoogle Scholar
  10. Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (1998) Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. Eur J Neurosci 10:3020–3023. doi:10.1111/j.1460-9568.1998.00348.x PubMedCrossRefGoogle Scholar
  11. Carey GJ, Billard W, Binch HIII, Cohen-Williams M, Crosby G, Grzelak M, Guzik H, Kozlowski JA, Lowe DB, Pond AJ, Tedesco RP, Watkins RW, Coffin VL (2001) SCH 57790, a selective muscarinic M(2) receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur J Pharmacol 431:189–200. doi:10.1016/S0014-2999(01)01440-6 PubMedCrossRefGoogle Scholar
  12. Carroll JB (1993) Human mental abilities: a survey of factor analytic studies. Cambridge University Press, CambridgeGoogle Scholar
  13. Comings DE, Wu S, Rostamkhani M, McGue M, Iacono WG, MacMurray JP (2002) Association of the muscarinic cholinergic 2 receptor (CHRM2) gene with major depression in women. Am J Med Genet 114:527–529. doi:10.1002/ajmg.10406 PubMedCrossRefGoogle Scholar
  14. Comings DE, Wu S, Rostamkhani M, McGue M, Lacono WG, Cheng LS, MacMurray JP (2003) Role of the cholinergic muscarinic 2 receptor (CHRM2) gene in cognition. Mol Psychiatry 8:10–11. doi:10.1038/sj.mp.4001095 PubMedCrossRefGoogle Scholar
  15. Crawford JR, Deary IJ, Starr J, Whalley LJ (2001) The NART as an index of prior intellectual functioning: a retrospective validity study covering a 66-year interval. Psychol Med 31:451–458. doi:10.1017/S0033291701003634 PubMedCrossRefGoogle Scholar
  16. de Frias CM, Annerbrink K, Westberg L, Eriksson E, Adolfsson R, Nilsson LG (2005) Catechol O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults. Journal of Cogn Neurosci 17:1018–1025. doi:10.1162/0898929054475136 CrossRefGoogle Scholar
  17. Deary IJ, Spinath FM, Bates TC (2006) Genetics of intelligence. Eur J Hum Genet 14:690–700. doi:10.1038/sj.ejhg.5201588 PubMedCrossRefGoogle Scholar
  18. Deary IJ, Strand S, Smith P, Fernandes C (2007) Intelligence and educational achievement. Intelligence 35:13–21. doi:10.1016/j.intell.2006.02.001 CrossRefGoogle Scholar
  19. Devlin B, Daniels M, Roeder K (1997) The heritability of IQ. Nature 388:468–471. doi:10.1038/41319 PubMedCrossRefGoogle Scholar
  20. Dick DM, Aliev F, Kramer J, Wang JC, Hinrichs A, Bertelsen S, Kuperman S, Schuckit M, Nurnberger J Jr, Edenberg HJ, Porjesz B, Begleiter H, Hesselbrock V, Goate A, Bierut L (2007) Association of CHRM2 with IQ: converging evidence for a gene influencing intelligence. Behav Genet 37:265–272. doi:10.1007/s10519-006-9131-2 PubMedCrossRefGoogle Scholar
  21. Dick DM, Aliev F, Wang JC, Grucza RA, Schuckit M, Kuperman S, Kramer J, Hinrichs A, Bertelsen S, Budde JP, Hesselbrock V, Porjesz B, Edenberg HJ, Bierut LJ, Goate A (2008) Using dimensional models of externalizing psychopathology to aid in gene identification. Arch Gen Psychiatry 65:310–318PubMedCrossRefGoogle Scholar
  22. Edenberg HJ, Foroud T (2006) The genetics of alcoholism: identifying specific genes through family studies. Addict Biol 11:386–396. doi:10.1111/j.1369-1600.2006.00035.x PubMedCrossRefGoogle Scholar
  23. Fisher A, Brandeis R, Bar-Ner RH, Kliger-Spatz M, Natan N, Sonego H, Marcovitch I, Pittel Z (2002) AF150(S) and AF267B: M1 muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci 19:145–153. doi:10.1007/s12031-002-0025-3 PubMedCrossRefGoogle Scholar
  24. Fowkes FG, Murray GD, Butcher I, Heald CL, Lee RJ, Chambless LE, Folsom AR, Hirsch AT, Dramaix M, deBacker G, Wautrecht JC, Kornitzer M, Newman AB, Cushman M, Sutton-Tyrrell K, Fowkes FG, Lee AJ, Price JF, d’Agostino RB, Murabito JM, Norman PE, Jamrozik K, Curb JD, Masaki KH, Rodriguez BL, Dekker JM, Bouter LM, Heine RJ, Nijpels G, Stehouwer CD, Ferrucci L, McDermott MM, Stoffers HE, Hooi JD, Knottnerus JA, Ogren M, Hedblad B, Witteman JC, Breteler MM, Hunink MG, Hofman A, Criqui MH, Langer RD, Fronek A, Hiatt WR, Hamman R, Resnick HE, Guralnik J, McDermott MM (2008) Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. J Am Med Assoc 300:197–208. doi:10.1001/jama.300.2.197 CrossRefGoogle Scholar
  25. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229. doi:10.1126/science.1069424 PubMedCrossRefGoogle Scholar
  26. Gosso MF, van Belzen M, de Geus EJ, Polderman JC, Heutink P, Boomsma DI, Posthuma D (2006) Association between the CHRM2 gene and intelligence in a sample of 304 Dutch families. Genes Brain Behav 5:577–584. doi:10.1111/j.1601-183X.2006.00211.x PubMedCrossRefGoogle Scholar
  27. Gosso FM, de Geus EJ, Polderman TJ, Boomsma DI, Posthuma D, Heutink P (2007) Exploring the functional role of the CHRM2 gene in human cognition: results from a dense genotyping and brain expression study. BMC Med Genet 8:66. doi:10.1186/1471-2350-8-66 PubMedCrossRefGoogle Scholar
  28. Harris SE, Fox H, Wright AF, Hayward C, Starr JM, Whalley LJ, Deary IJ (2007) A genetic association analysis of cognitive ability and cognitive ageing using 325 markers for 109 genes associated with oxidative stress or cognition. BMC Genet 8:43. doi:10.1186/1471-2156-8-43 PubMedCrossRefGoogle Scholar
  29. Heald CL, Fowkes FG, Murray GD, Price JF (2006) Risk of mortality and cardiovascular disease associated with the ankle-brachial index: systematic review. Atherosclerosis 189:61–69. doi:10.1016/j.atherosclerosis.2006.03.011 PubMedCrossRefGoogle Scholar
  30. Heim AW (1970) Intelligence and personality: their assessment and relationship. Penguin, HarmondsworthGoogle Scholar
  31. Hemminger BM, Saelim B, Sullivan PF (2006) TAMAL: an integrated approach to choosing SNPs for genetic studies of human complex traits. Bioinformatics (Oxford, England) 22:626–627. doi:10.1093/bioinformatics/btk025 CrossRefGoogle Scholar
  32. Jackson DN (1984) Manual for the multidimensional aptitude battery. Research Psychologists Press, Port HuronGoogle Scholar
  33. Jackson DN (1998) Multidimensional aptitude battery II. Sigma Assessment Sytem, Inc., Port HuronGoogle Scholar
  34. Jensen AR (1998) The g factor: the science of mental ability. Praeger, WestportGoogle Scholar
  35. Jones KA, Porjesz B, Almasy L, Bierut L, Goate A, Wang JC, Dick DM, Hinrichs A, Kwon J, Rice JP, Rohrbaugh J, Stock H, Wu W, Bauer LO, Chorlian DB, Crowe RR, Edenberg HJ, Foroud T, Hesselbrock V, Kuperman S, Nurnberger J Jr, O’Connor SJ, Schuckit MA, Stimus AT, Tischfield JA, Reich T, Begleiter H (2004) Linkage and linkage disequilibrium of evoked EEG oscillations with CHRM2 receptor gene polymorphisms: implications for human brain dynamics and cognition. Int J Psychophysiol 53:75–90. doi:10.1016/j.ijpsycho.2004.02.004 PubMedCrossRefGoogle Scholar
  36. Jones KA, Porjesz B, Almasy L, Bierut L, Dick D, Goate A, Hinrichs A, Rice JP, Wang JC, Bauer LO, Crowe R, Foroud T, Hesselbrock V, Kuperman S, Nurnberger J Jr, O’Connor SJ, Rohrbaugh J, Schuckit MA, Tischfield J, Edenberg HJ, Begleiter H (2006) A cholinergic receptor gene (CHRM2) affects event-related oscillations. Behav Genet 36:627–639. doi:10.1007/s10519-006-9075-6 PubMedCrossRefGoogle Scholar
  37. Lai MK, Lai OF, Keene J, Esiri MM, Francis PT, Hope T, Chen CP (2001) Psychosis of Alzheimer’s disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 57:805–811PubMedGoogle Scholar
  38. Lezak MD (1982) Neuropsychological assessment. Oxford University Press, New YorkGoogle Scholar
  39. Luciano M, Wright MJ, Geffen GM, Geffen LB, Smith GA, Martin NG (2004) A genetic investigation of the covariation among inspection time, choice reaction time, and IQ subtest scores. Behav Genet 34:41–50. doi:10.1023/B:BEGE.0000009475.35287.9d PubMedCrossRefGoogle Scholar
  40. Luo X, Kranzler HR, Zuo L, Wang S, Blumberg HP, Gelernter J (2005) CHRM2 gene predisposes to alcohol dependence, drug dependence and affective disorders: results from an extended case-control structured association study. Hum Mol Genet 14:2421–2434. doi:10.1093/hmg/ddi244 PubMedCrossRefGoogle Scholar
  41. McClearn GE, Johansson B, Berg S, Pedersen NL, Ahern F, Petrill SA, Plomin R (1997) Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276:1560–1563. doi:10.1126/science.276.5318.1560 PubMedCrossRefGoogle Scholar
  42. McGregor B, Pfitzner J, Zhu G, Grace M, Eldridge A, Pearson J, Mayne C, Aitken JF, Green AC, Martin NG (1999) Genetic and environmental contributions to size, color, shape, and other characteristics of melanocytic naevi in a sample of adolescent twins. Genet Epidemiol 16:40–53. doi:10.1002/(SICI)1098-2272(1999)16:1<40::AID-GEPI4>3.0.CO;2-1 PubMedCrossRefGoogle Scholar
  43. Miyajima F, Quinn JP, Horan M, Pickles A, Ollier WE, Pendleton N, Payton A (2008) Additive effect of BDNF and REST polymorphisms is associated with improved general cognitive ability. Genes Brain Behav 7:714–719. doi:10.1111/j.1601-183X.2008.00409.x PubMedCrossRefGoogle Scholar
  44. Nyholt DR (2006) On the probability of dizygotic twins being concordant for two alleles at multiple polymorphic loci. Twin Res Hum Genet 9:194–197. doi:10.1375/twin.9.2.194 PubMedCrossRefGoogle Scholar
  45. Payton A (2006) Investigating cognitive genetics and its implications for the treatment of cognitive deficit. Genes Brain Behav 5(Suppl 1):44–53. doi:10.1111/j.1601-183X.2006.00194.x PubMedCrossRefGoogle Scholar
  46. Pertusa M, Garcia-Matas S, Mammeri H, Adell A, Rodrigo T, Mallet J, Cristofol R, Sarkis C, Sanfeliu C (2008) Expression of GDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiol Aging 29:1366–1379. doi:10.1016/j.neurobiolaging.2007.02.026 PubMedCrossRefGoogle Scholar
  47. Polderman TJ, Gosso MF, Posthuma D, Van Beijsterveldt TC, Heutink P, Verhulst FC, Boomsma DI (2006) A longitudinal twin study on IQ, executive functioning, and attention problems during childhood and early adolescence. Acta Neurol Belg 106:191–207PubMedGoogle Scholar
  48. Price JF, Stewart MC, Douglas AF, Murray GD, Fowkes GF (2008) Frequency of a low ankle brachial index in the general population by age, sex and deprivation: cross-sectional survey of 28, 980 men and women. Eur J Cardiovasc Prev Rehabil 15:370–375. doi:10.1097/HJR.0b013e3282f8b36a PubMedCrossRefGoogle Scholar
  49. Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics (Oxford, England) 19:149–150. doi:10.1093/bioinformatics/19.1.149 CrossRefGoogle Scholar
  50. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795 PubMedCrossRefGoogle Scholar
  51. Rabbitt PMA, McInnes L, Diggle P, Holland F, Bent N, Abson V, Pendleton N, Horan M (2004) The University of Manchester longitudinal Study of cognition in normal healthy old age, 1983 through 2003. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 11:245–279. doi:10.1080/13825580490511116 CrossRefGoogle Scholar
  52. Raven JC (1965) Mill Hill vocabulary scale. H. K. Lewis, LondonGoogle Scholar
  53. Raven J, Raven JC, Court JH (1998) Raven manual: standard progressive matrices. Oxford Psychologists Press, OxfordGoogle Scholar
  54. Savitz J, Solms M, Ramesar R (2006) The molecular genetics of cognition: dopamine, COMT and BDNF. Genes Brain Behav 5:311–328. doi:10.1111/j.1601-183X.2005.00163.x PubMedCrossRefGoogle Scholar
  55. Silva AJ (2003) Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J Neurobiol 54:224–237. doi:10.1002/neu.10169 PubMedCrossRefGoogle Scholar
  56. Stewart MC, Deary IJ, Fowkes FG, Price JF (2006) Relationship between lifetime smoking, smoking status at older age and human cognitive function. Neuroepidemiology 26:83–92. doi:10.1159/000090253 PubMedCrossRefGoogle Scholar
  57. Underhill PA, Jin L, Lin AA, Mehdi SQ, Jenkins T, Vollrath D, Davis RW, Cavalli-Sforza LL, Oefner PJ (1997) Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res 7:996–1005PubMedGoogle Scholar
  58. Wang JC, Hinrichs AL, Stock H, Budde J, Allen R, Bertelsen S, Kwon JM, Wu W, Dick DM, Rice J, Jones K, Nurnberger JI Jr, Tischfield J, Porjesz B, Edenberg HJ, Hesselbrock V, Crowe R, Schuckit M, Begleiter H, Reich T, Goate AM, Bierut LJ (2004) Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum Mol Genet 13:1903–1911. doi:10.1093/hmg/ddh194 PubMedCrossRefGoogle Scholar
  59. Wechsler D (1981) Wechsler adult intelligence scale-revised. Psychological Corporation, New YorkGoogle Scholar
  60. Wigginton JE, Abecasis GR (2005) PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics (Oxford, England) 21:3445–3447. doi:10.1093/bioinformatics/bti529 CrossRefGoogle Scholar
  61. Wright MJ, Martin NG (2004) Brisbane adolescent twin study: outline of study methods and research projects. Aust J Psychol 56:65–78. doi:10.1080/00049530410001734865 CrossRefGoogle Scholar
  62. Zhu G, Duffy DL, Eldridge A, Grace M, Mayne C, O’Gorman L, Aitken JF, Neale MC, Hayward NK, Green AC, Martin NG (1999) A major quantitative-trait locus for mole density is linked to the familial melanoma gene CDKN2A: a maximum-likelihood combined linkage and association analysis in twins and their sibs. Am J Hum Genet 65:483–492. doi:10.1086/302494 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Penelope A. Lind
    • 1
  • Michelle Luciano
    • 1
    • 2
  • Michael A. Horan
    • 3
  • Riccardo E. Marioni
    • 4
  • Margaret J. Wright
    • 1
  • Timothy C. Bates
    • 2
  • Patrick Rabbitt
    • 5
  • Sarah E. Harris
    • 2
    • 6
  • Yvonne Davidson
    • 3
  • Ian J. Deary
    • 2
  • Linda Gibbons
    • 3
  • Andrew Pickles
    • 5
  • William Ollier
    • 7
  • Neil Pendleton
    • 3
  • Jackie F. Price
    • 4
  • Antony Payton
    • 8
  • Nicholas G. Martin
    • 1
  1. 1.Genetic Epidemiology UnitPO Royal Brisbane HospitalBrisbaneAustralia
  2. 2.Department of Psychology, Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
  3. 3.Clinical Gerontology, Hope HospitalUniversity of ManchesterGreater ManchesterUK
  4. 4.Division of Community Health SciencesUniversity of EdinburghEdinburghScotland, UK
  5. 5.Age and Cognitive Performance Research CentreUniversity of ManchesterManchesterUK
  6. 6.Centre for Cognitive Ageing and Cognitive Epidemiology, Medical Genetics SectionUniversity of EdinburghEdinburghUK
  7. 7.Biostatistics GroupUniversity of ManchesterManchesterUK
  8. 8.Centre for Integrated Genomic Medical ResearchUniversity of ManchesterManchesterUK

Personalised recommendations