Behavior Genetics

, Volume 39, Issue 4, pp 359–370 | Cite as

A Twin Study of the Genetics of High Cognitive Ability Selected from 11,000 Twin Pairs in Six Studies from Four Countries

  • Claire M. A. Haworth
  • Margaret J. Wright
  • Nicolas W. Martin
  • Nicholas G. Martin
  • Dorret I. Boomsma
  • Meike Bartels
  • Danielle Posthuma
  • Oliver S. P. Davis
  • Angela M. Brant
  • Robin P. Corley
  • John K. Hewitt
  • William G. Iacono
  • Matthew McGue
  • Lee A. Thompson
  • Sara A. Hart
  • Stephen A. Petrill
  • David Lubinski
  • Robert Plomin
Original Research

Abstract

Although much genetic research has addressed normal variation in intelligence, little is known about the etiology of high cognitive abilities. Using data from 11,000 twin pairs (age range = 6–71 years) from the genetics of high cognitive abilities consortium, we investigated the genetic and environmental etiologies of high general cognitive ability (g). Age-appropriate psychometric cognitive tests were administered to the twins and used to create g scores standardized within each study. Liability-threshold model fitting was used to estimate genetic and environmental parameters for the top 15% of the distribution of g. Genetic influence for high g was substantial (0.50, with a 95% confidence interval of 0.41–0.60). Shared environmental influences were moderate (0.28, 0.19–0.37). We conclude that genetic variation contributes substantially to high g in Australia, the Netherlands, the United Kingdom and the United States.

Keywords

Genetics High cognitive ability Twins Intelligence Talent 

References

  1. Akaike H (1987) Factor analysis and AIC. Psychometrika 52:317–332CrossRefGoogle Scholar
  2. Bartels M, Rietveld MJ, van Baal GC, Boomsma DI (2002) Genetic and environmental influences on the development of intelligence. Behav Genet 32:237–249. doi:10.1023/A:1019772628912 PubMedCrossRefGoogle Scholar
  3. Bleichrodt N, Drenth PJD, Zaal JN, Resing WCM (1984) Revisie Amsterdams kinder intelligentie test. Swets and Zeitlinger B.V, LisseGoogle Scholar
  4. Boomsma DI, De Geus EJC, Vink JM, Stubbe JH, Distel MA, Hottenga JJ et al (2006) Netherlands twin register: from twins to twin families. Twin Res Hum Genet 9:849–857. doi:10.1375/twin.9.6.849 PubMedCrossRefGoogle Scholar
  5. Boomsma DI, van Beijsterveld TCEM, Beem AL, Hoekstra RA, Polderman TJC, Bartels M (2008) Intelligence and birth order in boys and girls. Intelligence 36:630–634. doi:10.1016/j.intell.2008.01.005 CrossRefGoogle Scholar
  6. Bouchard TJ Jr, McGue M (1981) Familial studies of intelligence: a review. Science 212:1055–1059. doi:10.1126/science.7195071 PubMedCrossRefGoogle Scholar
  7. Davis OSP, Haworth CMA, Plomin R (2009) Generalist genes for cognition: etiology of learning abilities and disabilities in early adolescence. Cogn Neuropsychiatr (in press)Google Scholar
  8. Deary IJ, Spinath FM, Bates TC (2006) Genetics of intelligence. Eur J Hum Genet 14:690–700. doi:10.1038/sj.ejhg.5201588 PubMedCrossRefGoogle Scholar
  9. DeFries JC (1985) Colorado reading project. In: Gray DB, Kavanagh JF (eds) Biobehavioral measures of dyslexia. York Press, Parkton, pp 107–122Google Scholar
  10. DeFries JC, Olson RK, Pennington RF, Smith SD (1991) Colorado reading project: an update. In: Duane DD, Gray DB (eds) The reading brain: the biological basis of dyslexia, York Press, Parkton, pp 53–87Google Scholar
  11. DeFries JC, Filipek PA, Fulker DW, Olson RK, Pennington BF, Smith SD et al (1997) Colorado learning disabilities research center. Learn Disabil Q 8:7–19Google Scholar
  12. Falconer DS (1965) The inheritance of liability to certain diseases estimated from the incidence among relatives. Ann Hum Genet 29:51–76. doi:10.1111/j.1469-1809.1965.tb00500.x CrossRefGoogle Scholar
  13. Fox PW, Hershberger SL, Bouchard TJ Jr (1996) Genetic and environmental contributions to the acquisition of a motor skill. Nature 384:356–357. doi:10.1038/384356a0 PubMedCrossRefGoogle Scholar
  14. Galton F (1869) Hereditary genius: an enquiry into its laws and consequences. Macmillan, LondonGoogle Scholar
  15. Galton F (1883) Inquiries into human faculty and its development. Macmillan, LondonGoogle Scholar
  16. Haworth CMA, Harlaar N, Kovas Y, Davis OSP, Oliver BR, Hayiou-Thomas ME et al (2007) Internet cognitive testing of large samples needed in genetic research. Twin Res Hum Genet 10:554–563. doi:10.1375/twin.10.4.554 PubMedCrossRefGoogle Scholar
  17. Haworth CMA, Wright MJ, Luciano M, Martin NG, de Geus EJC, van Beijsterveldt CEM et al (2009) The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatr (in press)Google Scholar
  18. Howe MJA, Davidson JW, Sloboda JA (1998) Innate talents: reality or myth? Behav Brain Sci 21:399–442. doi:10.1017/S0140525X9800123X CrossRefGoogle Scholar
  19. Iacono WG, Carlson SR, Taylor J, Elkins IJ, McGue M (1999) Behavioral disinhibition and the development of substance-use disorders: findings from the Minnesota twin family study. Dev Psychopathol 11:869–900. doi:10.1017/S0954579499002369 PubMedCrossRefGoogle Scholar
  20. Iacono WG, McGue M, Krueger RF (2006) Minnesota Center for twin and family research. Twin Res Hum Genet 9:978–984. doi:10.1375/twin.9.6.978 PubMedCrossRefGoogle Scholar
  21. Jackson DN (1998) Multidimensional aptitude battery II: manual. Sigma Assessment Systems, Port HuronGoogle Scholar
  22. Jensen AR (1998) The g factor: the science of mental ability. Praeger, WesportGoogle Scholar
  23. Johnson W, Nijenhuis J, Bouchard TJ (2008) Still just 1 g: consistent results from five test batteries. Intelligence 36:81–95. doi:10.1016/j.intell.2007.06.001 CrossRefGoogle Scholar
  24. Koeppen-Schomerus G, Spinath FM, Plomin R (2003) Twins and non-twin siblings: different estimates of shared environmental influence in early childhood. Twin Res 6:97–105. doi:10.1375/136905203321536227 PubMedCrossRefGoogle Scholar
  25. Kovas Y, Haworth CMA, Dale PS, Plomin R (2007) The genetic and environmental origins of learning abilities and disabilities in the early school years. Monogr Soc Res Child Dev 72:1–144Google Scholar
  26. Kruglyak L (2008) The road to genome-wide association studies. Nat Rev Genet 9:314–318. doi:10.1038/nrg2316 PubMedCrossRefGoogle Scholar
  27. Lubinski D, Benbow CP (2006) Study of mathematically precocious youth after 35 years: uncovering antecedents for the development of math-science expertise. Perspect Psychol Sci 1:316–345Google Scholar
  28. Lubinski D, Benbow CP, Webb RM, Bleske-Rechek A (2006) Tracking exceptional human capital over two decades. Psychol Sci 17:194–199. doi:10.1111/j.1467-9280.2006.01685.x PubMedCrossRefGoogle Scholar
  29. Luciano M, Wright MJ, Geffen GM, Geffen LB, Smith GA, Evans DM et al (2003a) A genetic two-factor model of the covariation among a subset of multidimensional aptitude battery and Wechsler adult intelligence scale-revised subtests. Intelligence 31:589–605. doi:10.1016/S0160-2896(03)00057-6 CrossRefGoogle Scholar
  30. Luciano M, Wright MJ, Smith GA, Geffen GM, Geffen LB, Martin NG (2003b) Genetic covariance between processing speed and IQ. In: Plomin R, DeFries JC, Craig IW, McGuffin P (eds) Behavioral genetics in the postgenomic era. American Psychological Association, Washington, DC, pp 163–181CrossRefGoogle Scholar
  31. Lykken DT (1968) Statistical significance in psychological research. Psychol Bull 70:151–159. doi:10.1037/h0026141 PubMedCrossRefGoogle Scholar
  32. Lykken DT (1982) Research with twins: the concept of emergenesis. Psychophysiology 19:361–373. doi:10.1111/j.1469-8986.1982.tb02489.x PubMedCrossRefGoogle Scholar
  33. Lykken DT (2006) The mechanism of emergenesis. Genes Brain Behav 5:306–310. doi:10.1111/j.1601-183X.2006.00233.x PubMedCrossRefGoogle Scholar
  34. McGue M, Bouchard TJ Jr (1984) Adjustment of twin data for the effects of age and sex. Behav Genet 14:325–343. doi:10.1007/BF01080045 PubMedCrossRefGoogle Scholar
  35. Neale MC, Boker SM, Xie G, Maes H (2006) Mx: statistical modeling, 7th edn. Department of Psychiatry, RichmondGoogle Scholar
  36. Nichols RC, Bilbro WC (1966) The diagnosis of twin zygosity. Acta Genet 16:265–275. doi:10.1159/000151973 PubMedGoogle Scholar
  37. Nyholt DR (2006) On the probability of dizygotic twins being concordant for two alleles at multiple polymorphic loci. Twin Res Hum Genet 9:194–197. doi:10.1375/twin.9.2.194 PubMedCrossRefGoogle Scholar
  38. Oliver BR, Plomin R (2007) Twins early development study (TEDS): a multivariate, longitudinal genetic investigation of language, cognition and behavior problems from childhood through adolescence. Twin Res Hum Genet 10:96–105. doi:10.1375/twin.10.1.96 PubMedCrossRefGoogle Scholar
  39. Petrill SA, Saudino KJ, Cherny SC, Emde RN, Fulker DW, Hewitt JK et al (1998) Exploring the genetic and environmental etiology of high general cognitive ability in 14 to 36 month-old twins. Child Dev 69:68–74PubMedGoogle Scholar
  40. Petrill SA, Deater-Deckard K, Thompson LA, Schatschneider C, DeThorne LS, Vandenbergh DJ (2007) Longitudinal genetic analysis of early reading: the Western Reserve reading project. Read Writ 20:127–146. doi:10.1007/s11145-006-9021-2 CrossRefGoogle Scholar
  41. Plomin R, Kovas Y (2005) Generalist genes and learning disabilities. Psychol Bull 131:592–617. doi:10.1037/0033-2909.131.4.592 Google Scholar
  42. Plomin R, Spinath FM (2004) Intelligence: genetics, genes, and genomics. J Pers Soc Psychol 86:112–129. doi:10.1037/0022-3514.86.1.112 PubMedCrossRefGoogle Scholar
  43. Plomin R, Thompson LA (1993) Genetics and high cognitive ability. In: Bock GR, Ackrill K (eds) The origins and development of high ability. Wiley (CIBA Foundation Symposium 178), Chichester, pp 62–84Google Scholar
  44. Plomin R, DeFries JC, McClearn GE, McGuffin P (2008) Behavioral genetics, 5th edn. Worth, New YorkGoogle Scholar
  45. Polderman TJC, Gosso MF, Posthuma D, van Beijsterveldt TC, Heutink P, Verhulst FC et al (2006) A longitudinal twin study on IQ, executive functioning, and attention problems during childhood and early adolescence. Acta Neurol Belg 106:191PubMedGoogle Scholar
  46. Posthuma D, Mulder E, Boomsma DI, De Geus EJC (2002) Genetic analysis of IQ, processing speed and stimulus-response incongruency effects. Biol Psychol 61:157–182. doi:10.1016/S0301-0511(02)00057-1 PubMedCrossRefGoogle Scholar
  47. Price TS, Freeman B, Craig IW, Petrill SA, Ebersole L, Plomin R (2000) Infant zygosity can be assigned by parental report questionnaire data. Twin Res 3:129–133. doi:10.1375/136905200320565391 PubMedCrossRefGoogle Scholar
  48. Putallaz M, Baldwin J, Selph H (2005) The Duke University talent identification program. High Abil Stud 16:41–54. doi:10.1080/13598130500115221 CrossRefGoogle Scholar
  49. Raven JC, Court JH, Raven J (1996) Manual for Raven’s progressive matrices and vocabulary scales. Oxford University Press, OxfordGoogle Scholar
  50. Raven JC, Court JH, Raven J (1998) Manual for Raven’s progressive matrices. H.K. Lewis, LondonGoogle Scholar
  51. Rhea SA, Gross AA, Haberstick BC, Corley RP (2006) Colorado twin registry. Twin Res Hum Genet 9:941–949. doi:10.1375/twin.9.6.941 PubMedCrossRefGoogle Scholar
  52. Rietveld MJH, van der Valk JC, Bongers IL, Stroet TM, Slagboom PE, Boomsma DI (2000) Zygosity diagnosis in young twins by parental report. Twin Res Hum Genet 3:134–141. doi:10.1375/twin.3.3.134 CrossRefGoogle Scholar
  53. Rijsdijk FV, Vernon PA, Boomsma DI (2002) Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study. Behav Genet 32:199–210. doi:10.1023/A:1016021128949 PubMedCrossRefGoogle Scholar
  54. Ronald A, Spinath F, Plomin R (2002) The aetiology of high cognitive ability in early childhood. High Abil Stud 13:103–114. doi:10.1080/1359813022000048761 CrossRefGoogle Scholar
  55. Saudino KJ, Plomin R, Pedersen NL, McClearn GE (1994) The etiology of high and low cognitive ability during the second half of the life span. Intelligence 19:353–371. doi:10.1016/0160-2896(94)90007-8 CrossRefGoogle Scholar
  56. Smith C (1974) Concordance in twins: methods and interpretation. Am J Hum Genet 26:454–466PubMedGoogle Scholar
  57. Spearman C (1927) The abilities of man: their nature and measurement. Macmillan, New YorkGoogle Scholar
  58. Thompson LA, Detterman DK, Plomin R (1993) Differences in heritability across groups differing in ability, revisited. Behav Genet 23:331–336. doi:10.1007/BF01067433 PubMedCrossRefGoogle Scholar
  59. Thorndike RL, Hagen EP, Sattler JM (1986) Guide for administering and scoring the fourth edition: Stanford-Binet intelligence scale. Riverside, ChicagoGoogle Scholar
  60. Turkheimer E, Haley A, Waldron M, D’Onofrio B, Gottesman II (2003) Socioeconomic status modifies heritability of IQ in young children. Psychol Sci 14:623–628. doi:10.1046/j.0956-7976.2003.psci_1475.x PubMedCrossRefGoogle Scholar
  61. Wechsler D (1974) Manual for the Wechsler intelligence scale for children-revised. (Revised ed.). Psychological Corporation, New YorkGoogle Scholar
  62. Wechsler D (1981) Examiner’s manual: Wechsler adult intelligence scale: revised. The Psychological Corporation, New YorkGoogle Scholar
  63. Wechsler D (1991) WISC-III. The Psychological Corporation, San AntonioGoogle Scholar
  64. Wechsler D (1992) Wechsler intelligence scale for children—third edition UK (WISC-IIIUK) manual. The Psychological Corporation, LondonGoogle Scholar
  65. Wechsler D (1997) Wechsler adult intelligence scale-III. The Psychological Corporation, New YorkGoogle Scholar
  66. Wright MJ, Martin NG (2004) Brisbane adolescent twin study: outline of study methods and research projects. Aust J Psychol 56:65–78. doi:10.1080/00049530410001734865 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Claire M. A. Haworth
    • 1
  • Margaret J. Wright
    • 2
  • Nicolas W. Martin
    • 2
  • Nicholas G. Martin
    • 2
  • Dorret I. Boomsma
    • 3
  • Meike Bartels
    • 3
  • Danielle Posthuma
    • 3
    • 4
    • 5
  • Oliver S. P. Davis
    • 1
  • Angela M. Brant
    • 6
  • Robin P. Corley
    • 6
  • John K. Hewitt
    • 6
  • William G. Iacono
    • 7
  • Matthew McGue
    • 7
  • Lee A. Thompson
    • 8
  • Sara A. Hart
    • 9
  • Stephen A. Petrill
    • 9
  • David Lubinski
    • 10
  • Robert Plomin
    • 1
  1. 1.Social, Genetic and Developmental Psychiatry Centre, Institute of PsychiatryKing’s College LondonLondonUK
  2. 2.Queensland Institute of Medical ResearchBrisbaneAustralia
  3. 3.Department of Biological Psychology, Faculty of Psychology and EducationVU UniversityAmsterdamThe Netherlands
  4. 4.Section Medical GenomicsVU Medical CentreAmsterdamThe Netherlands
  5. 5.Section Functional Genomics, Faculty Earth and Life ScienceVU UniversityAmsterdamThe Netherlands
  6. 6.Institute for Behavioral GeneticsUniversity of Colorado at BoulderBoulderUSA
  7. 7.Department of PsychologyUniversity of MinnesotaMinneapolisUSA
  8. 8.Department of PsychologyCase Western Reserve UniversityClevelandUSA
  9. 9.Human Development and Family ScienceOhio State UniversityColumbusUSA
  10. 10.Department of Psychology and Human DevelopmentVanderbilt UniversityNashvilleUSA

Personalised recommendations