Behavior Genetics

, 38:417 | Cite as

Genetic Mapping of Vocalization to a Series of Increasing Acute Footshocks Using B6.A Consomic and B6.D2 Congenic Mouse Strains

  • Douglas B. MatthewsEmail author
  • Elissa J. Chesler
  • Melloni N. Cook
  • Jody Cockroft
  • Vivek M. Philip
  • Dan Goldowitz
Original Paper


Footshock response is used to study a variety of biological functions in mammals including drug self-administration, learning and memory and nociception. However, the genetics underlying variability in footshock sensitivity are not well understood. In the current studies, a panel of B6.A consomic mouse strains, two B6.D2 genome-tagged mouse lines, and the progenitor strains were screened for footshock sensitivity as measured by audible vocalization. It was found that A/J (A) mice and C57BL/6J (B6) mice with an A Chromosome 1 (Chr 1) were less sensitive to footshock compared to B6 animals. Furthermore, the offspring of Chr 1 consomic mice crossed with B6 mice had vocalization levels that were intermediate to A/J and B6 animals. A F2 mapping panel revealed two significant QTLs for footshock vocalization centered around D1Mit490 and D1Mit206 on Chr 1. The role of these Chr 1 loci in footshock sensitivity was confirmed in B6.D2 genome-tagged mouse lines.


Stress Footshock Vocalization Mice QTL Chromosome 1 



This manuscript was supported by the following grants: NIMH grant MH61971, R25 MH-066890, U01-AA-13503, AA014588, AA13509, DA020677, and AA016662 to the authors.


  1. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl QTL mapping in experimental crosses. Bioinformatics 19:889–890. doi: 10.1093/bioinformatics/btg112 PubMedCrossRefGoogle Scholar
  2. Brown SA, Vik PW, Patterson TL, Grant I, Schuckit MA (1995) Stress, vulnerability and adult alcohol relapse. J Stud Alcohol 56:538–545PubMedGoogle Scholar
  3. Carran AB, Yeudall LT, Royce JR (1964) Voltage level and skin resistance in avoidance conditioning of inbred strains of mice. J Comp Physiol Psychol 58:427–430. doi: 10.1037/h0046774 PubMedCrossRefGoogle Scholar
  4. Coburn CA (1922) Heredity of wildness and savageness in mice. Behav Monog 4:1–71Google Scholar
  5. Conger JL (1956) Alcoholism: theory, problem and challenge. II. Reinforcement theory and the dynamics of alcoholism. Q J Stud Alcohol 17:296–305PubMedGoogle Scholar
  6. Cooper ML, Russell M, Skinner JB, Frone MR, Mudar P (1992) Stress and alcohol use: moderating effects of gender, coping, and alcohol expectancies. J Abnorm Psychol 101:139–152. doi: 10.1037/0021-843X.101.1.139 PubMedCrossRefGoogle Scholar
  7. Davis RC, Schadt EE, Smith DJ, Hsieh EW, Cervino AC, van Nas A et al (2005) A genome-wide set of congenic mouse strains derived from DBA/2J on a C57BL/6J background. Genomics 86:259–270. doi: 10.1016/j.ygeno.2005.05.010 PubMedCrossRefGoogle Scholar
  8. Dawson DA, Grant BF, Ruan WJ (2005) The association between stress and drinking: modifying effects of gender and vulnerability. Alcohol Alcoholism 40:453–460. doi: 10.1093/alcalc/agh176 CrossRefGoogle Scholar
  9. Dawson DA, Grant BF, Li TK (2007) Impact of age of first drink on stress-reactive drinking. Alcohol Clin Exp Res 31:69–77. doi: 10.1111/j.1530-0277.2006.00265.x PubMedCrossRefGoogle Scholar
  10. de Quervain DJ, Roozendaal B, McGaugh JL (1998) Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394:787–790. doi: 10.1038/29542 PubMedCrossRefGoogle Scholar
  11. Fehr C, Shirley RL, Crabbe JC, Belknap JK, Buck KJ, Phillips TJ (2005) The syntaxin binding protein 1 gene (Stxbp1) is a candidate for an ethanol preference drinking locus on mouse chromosome 2. Alcohol Clin Exp Res 29:708–720. doi: 10.1097/01.ALC.0000164366.18376.EF PubMedCrossRefGoogle Scholar
  12. Goeders NE (2003) The impact of stress on addiction. Eur Neuropsychopharmacol 13:435–441. doi: 10.1016/j.euroneuro.2003.08.004 PubMedCrossRefGoogle Scholar
  13. Harbuz MS, Chover-Gonzalez A, Gibert-Rahola J, Jessop DS (2002) Protective effect of prior acute immune challenge, but not footshock, on inflammation in the rat. Brain Behav Immun 16:439–449. doi: 10.1006/brbi.2001.0658 PubMedCrossRefGoogle Scholar
  14. Iakoubova OA, Olsson CL, Dains KM, Ross DA, Andalibi A, Lau K et al (2001) Genome-tagged mice (GTM): two sets of genome-wide congenic strains. Genomics 74:89–104. doi: 10.1006/geno.2000.6497 PubMedCrossRefGoogle Scholar
  15. Le AD, Poulos CX, Harding S, Watchus J, Juzytsch W, Shaham Y (1999) Effects of naltrexone and fluoxetine on alcohol self-administration and reinstatement of alcohol seeking induced by priming injections of alcohol and exposure to stress. Neuropsychopharmacology 21:435–444. doi: 10.1016/S0893-133X(99)00024-X PubMedCrossRefGoogle Scholar
  16. Liu X, Weiss F (2002) Additive effect of stress and drug cues on reinstatement of ethanol seeking: exacerbation by history of dependence and role of concurrent activation of corticotropin-releasing factor and opioid mechanisms. J Neurosci 15:7856–7861Google Scholar
  17. Martin-Fardon R, Ciccocioppo R, Massi M, Weiss F (2000) Nociceptin prevents stress-induced ethanol-but not cocaine-seeking behavior in rats. Neuroreport 11:1939–1943PubMedCrossRefGoogle Scholar
  18. Matthews DB, Morrow AL, O’Buckley T, Berry RB, Mittleman G, Goldowitz D et al. The effect of acute mild footshock on ethanol self-administration and plasma corticosterone levels in three commonly used mouse strains. Alcohol (in press)Google Scholar
  19. Mori T, Makino J (1994) Response types to shock and avoidance learning in inbred strains of mice. Shinrigaku Kenkyu 4:285–302Google Scholar
  20. Reeves RH, Crowley MR, Lorenzon N, Pavan WJ, Smeyne RJ, Goldowitz D (1989) The mouse neurological mutant weaver maps within the region of chromosome 16 that is homologous to human chromosome 21. Genomics 5:522–526. doi: 10.1016/0888-7543(89)90018-9 PubMedCrossRefGoogle Scholar
  21. Roberts LE (1967) Central, peripheral and artifactual determinats of skin resistance in the mouse. J Comp Physiol Psychol 64:318–328. doi: 10.1037/h0024805 PubMedCrossRefGoogle Scholar
  22. Santos J, Montagutelli X, Acevedo A, Lopez P, Vaquero C, Fernandez M et al (2002) A new locus for resistance to gamma-radiation-induced thymic lymphoma identified using inter-specific consomic and inter-specific recombinant congenic strains of mice. Oncogene 21:6680–6683. doi: 10.1038/sj.onc.1205846 PubMedCrossRefGoogle Scholar
  23. Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M et al (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448. doi: 10.1126/science.1093139 PubMedCrossRefGoogle Scholar
  24. Swedberg MD (1994) The mouse grid-shock analgesia test: pharmacological characterization of latency to vocalization threshold as an index of antinociception. J Pharmacol Exp Ther 269:1021–1028PubMedGoogle Scholar
  25. Vengeliene V, Siegmund S, Singer MV, Sinclair JD, Li TK, Spanagel R (2003) A comparative study on alcohol-preferring rat lines: effects of deprivation and stress phases on voluntary alcohol intake. Alcohol Clin Exp Res 27:1048–1054. doi: 10.1097/01.ALC.0000075829.81211.0C PubMedCrossRefGoogle Scholar
  26. Volpicelli JR (1987) Uncontrollable events and alcohol drinking. Br J Addict 82:381–392. doi: 10.1111/j.1360-0443.1987.tb01494.x PubMedCrossRefGoogle Scholar
  27. Wahlsten D (1972) Phenotypic and genetic relations between initial response to electric shock and rate of avoidance learning in mice. Behav Genet 2:211–240. doi: 10.1007/BF01065691 PubMedCrossRefGoogle Scholar
  28. Weller CP, Sulman FG (1970) Drug action on tail shock-induced vocalization in mice and its relevance to analgesia. Eur J Pharmacol 9:227–234. doi: 10.1016/0014-2999(70)90304-3 PubMedCrossRefGoogle Scholar
  29. Whitney GD (1969) Vocalization of mice: a single genetic unit effect. J Hered 60:337–340PubMedGoogle Scholar
  30. Whitney GD (1973) Vocalization of mice influenced by a single gene in a heterogeneous population. Behav Genet 3:57–64. doi: 10.1007/BF01067689 PubMedCrossRefGoogle Scholar
  31. Yingling J, Toyo-Oka K, Wynshaw-Boris A (2003) Miller-Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse. Am J Hum Genet 73:475–488. doi: 10.1086/378096 PubMedCrossRefGoogle Scholar
  32. Zerbollo DJ (1967) Differences between three inbred mouse strains on a wheel-turn avoidance task. Psychon Sci 7:201–202Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Douglas B. Matthews
    • 1
    • 2
    Email author
  • Elissa J. Chesler
    • 3
  • Melloni N. Cook
    • 1
  • Jody Cockroft
    • 4
  • Vivek M. Philip
    • 5
  • Dan Goldowitz
    • 4
  1. 1.Department of PsychologyUniversity of MemphisMemphisUSA
  2. 2.Department of Psychology and NeuroscienceBaylor UniversityWacoUSA
  3. 3.Systems Genetics Group, Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisUSA
  5. 5.Genome Science and Technology ProgramUniversity of TennesseeKnoxvilleUSA

Personalised recommendations