Behavior Genetics

, Volume 38, Issue 2, pp 151–158 | Cite as

Genetic Heterozygosity and Sociality in a Primate Species

  • Marie J. E. CharpentierEmail author
  • Franck Prugnolle
  • Olivier Gimenez
  • Anja Widdig
Original Research


The relationship between an individual’s genotype and its phenotype is a central issue in biology, but one that is largely unexplored for the important phenotype of complex social behavior. Here we examine the relationship between heterozygosity and social behavior among unrelated adult female rhesus macaques living on the island of Cayo Santiago (Puerto Rico). We show that female macaques with lower mean neutral heterozygosity were discriminated against by their unrelated conspecifics: less heterozygous females received aggressive behavior at higher rates and received affiliation at lower rates than more heterozygous females. We demonstrate that these results are likely due to local genomic effects associated with particular microsatellite loci. Our study suggests that genetic characteristics can impact the way an individual experiences its social environment and that female macaques that are homozygous at two microsatellite loci appear to be less attractive social partners based on grooming and aggression received by unrelated conspecifics.


Correlations heterozygosity/fitness Local effect Social behavior Macaca mulatta 



We are grateful to the CPRC for permission to conduct this study. Furthermore, we are grateful to Fred Bercovitch, Matt Kessler, John Berard, Joerg Schmidtke, Peter Nürnberg and Michael Krawczak for their efforts to start continuous paternity analyses on Cayo Santiago as earlier as 1992. Andrea Trefilov, Heike Roessler and Ingrid Barth partly conducted the paternity analysis. We thank Linda Vigilant, Tim Coulson, Bill Amos and Courtney Fitzpatrick for their helpful comments on an earlier version of the manuscript. Finally, we are most grateful to Susan Alberts who gave us numerous advices and helpful comments during both the analyses and the writing of this manuscript. This publication was made possible by Grant Number CM-5-P40RR003640-13 award to the CPRC from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH. Further support was provided by the UPR Medical Sciences Campus, the German Science Foundation with an Emmy Noether grant to Anja Widdig (WI 1801/1-2) and Marie-Curie Outgoing and Intra-European Fellowships to both Marie Charpentier and Olivier Gimenez respectively.

Supplementary material

10519_2008_9191_MOESM1_ESM.doc (32 kb)
(DOC 32 kb)


  1. Acevedo-Whitehouse K, Gulland F, Grieg D, Amos W (2003) Disease susceptibility in California sea lions. Nature 422:6227CrossRefGoogle Scholar
  2. Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267PubMedGoogle Scholar
  3. Amos W, Worthington Wilmer J, Fullard K, Burg TM, Croxall JP, Bloch D, Coulson T (2001) The influence of parental relatedness on reproductive success. Proc Roy Soc Lond B 268:2021–2027CrossRefGoogle Scholar
  4. Anderson DR, Link WA, Johnson DH, Burnham KP (2001) Suggestions for presenting the results of data analyses. J Wildlife Manage 65:373–378CrossRefGoogle Scholar
  5. Aparicio JM, Cordero PJ, Veiga JP (2001) A test of the hypothesis of mate choice based on heterozygosity in the spotless starling. Anim Behav 62:1001–1006CrossRefGoogle Scholar
  6. Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031PubMedCrossRefGoogle Scholar
  7. Barnard CJ, Fitzsimons J (1989) Kin recognition and mate choice in mice: fitness consequences of mating with kin. Anim Behav 38:35–40CrossRefGoogle Scholar
  8. Bean K, Amos W, Pomeroy PP, Twiss SD, Coulson TN, Boyd IL (2004) Patterns of parental relatedness and pup survival in the grey seal (Halichoerus grypus). Mol Ecol 13:2365–2370PubMedCrossRefGoogle Scholar
  9. Camp NJ, Bansal A (1999) A low density genome-wide search for loci involved in alcohol dependence using the transmission/disequilibrium test, sib-TDT, and two combined tests. Genet Epidemiol 17(Suppl 1):85–90Google Scholar
  10. Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, Kaslow R, Buchbinder S, Hoots K, O’Brien SJ (1999) HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283:1748–1752PubMedCrossRefGoogle Scholar
  11. Charpentier M, Setchell JM, Prugnolle F, Knapp LA, Wickings EJ, Peignot P, Hossaert-McKey M (2005) Genetic diversity and reproductive success and in mandrills (Mandrillus sphinx). Proc Natl Acad Sci USA 102:16723–16728PubMedCrossRefGoogle Scholar
  12. Coltman D, Pilkington J, Smith J, Pemberton J (1999) Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53:1259–1267CrossRefGoogle Scholar
  13. Coulson TN, Pemberton JM, Albon SD, Beaumont M, Marshall TC, Slate J, Guinness FE, Clutton-Brock TH (1998) Microsatellites reveal heterosis in red deer. Proc Roy Soc Lond B 267:489–495CrossRefGoogle Scholar
  14. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270PubMedCrossRefGoogle Scholar
  15. Draper D (2000) Bayesian hierarchical modelling. Springer-Verlag, New YorkGoogle Scholar
  16. Eklund A (1996) The effects of inbreeding on aggression in wild male house mice (Mus domesticus). Behaviour 133:883–901Google Scholar
  17. Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain monte carlo in practice. Chapman & Hall, LondonGoogle Scholar
  18. Green PJ (1995) Reversible Jump MCMC computation and Bayesian model determination. Biometrika 82:711–732CrossRefGoogle Scholar
  19. Hall DB (2000) Zero-inflated Poisson and Binomial regression with random effects: a case study. Biometrics 56:1030–1039PubMedCrossRefGoogle Scholar
  20. Hansson B, Westergahl H, Hasselquist D, Åkesson M, Bensch S (2004) Does linkage disequilibrium generate heterozygosity fitness correlations in great reed warblers. Evolution 58:870–879PubMedGoogle Scholar
  21. House JS, Landis KR, Umberson D (1988) Social relationships and health. Science 241:540–545PubMedCrossRefGoogle Scholar
  22. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  23. Kiesecker JM, Skelly DK, Beard KH, Preisser E (1999) Behavioral reduction of infection risks. Proc Natl Acad Sci USA 96:9165–9168PubMedCrossRefGoogle Scholar
  24. Krawczak M, Trefilov A, Berard J, Bercovitch F, Kessler M, Sauermann U, Croucher P, Nürnberg P, Widdig A, Schmidtke J (2005) Male reproductive timing in rhesus macaques is influenced by the 5HTTLPR promoter polymorphism of the serotonin transporter gene. Biol Reprod 72:1109–1113PubMedCrossRefGoogle Scholar
  25. Latter BDH, Robertson A (1962) The effects of inbreeding and artificial selection on reproductive fitness. Genet Res 3:110–138CrossRefGoogle Scholar
  26. Latter BDH, Sved JA (1994) A re-evaluation of data from competitive tests shows high levels of heterosis in Drosophila melanogaster. Genetics 137:509–511PubMedGoogle Scholar
  27. Lieutenant-Gosselin M, Bernatchez L (2006) Local heterozygosity-fitness correlations with global positive effects on fitness in threespine stickleback. Evolution 60:1658–1668PubMedGoogle Scholar
  28. Link WA, Barker RJ (2005) Modeling association among demographic parameters in analysis of open population capture-recapture data. Biometrics 61:46–54PubMedCrossRefGoogle Scholar
  29. Malhi RS, Sickler B, Lin D, Satkoski J, Tito RY, George D, Kanthaswamy S, Smith DG (2007) MamuSNP: a resource for rhesus macaque (Macaca mulatta) genomics. PLoS ONE 2:438CrossRefGoogle Scholar
  30. Markert JA, Grant PR, Grant BR, Keller LF, Coombs JL, Petren K (2004) Neutral locus heterozygosity, inbreeding, and survival in Darwin’s ground finches (Geospiza fortis and G. scandens). Heredity 92:306–315PubMedCrossRefGoogle Scholar
  31. Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, Tyre AJ, Possingham HP (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246CrossRefGoogle Scholar
  32. Meagher S, Penn DJ, Potts WK (2000) Male–male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci USA 97:3324–3329PubMedCrossRefGoogle Scholar
  33. Müller G, Ward PI (1995) Parasitism and heterozygosity influence the secondary sexual characters of the european minnow, Phoxinus-phoxinus (L) (Cyprinidae). Ethology 100:309–319CrossRefGoogle Scholar
  34. Nürnberg P, Sauermann U, Kayser M, Lanfer C, Manz E, Widdig A, Berard J, Bercovitch FB, Kessler M, Schmidtke J, Krawczak M (1998) Paternity assessment in rhesus macaques (Macaca mulatta): multilocus DNA fingerprinting and PCR marker typing. Am J Primatol 44:1–18PubMedCrossRefGoogle Scholar
  35. Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol Evol 19:613–615PubMedCrossRefGoogle Scholar
  36. Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci USA 99:11260–11264PubMedCrossRefGoogle Scholar
  37. Rawlins RG, Kessler MJ (1986) The Cayo Santiago macaques: history, behavior and biology. State Univ New York Press, New YorkGoogle Scholar
  38. Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234CrossRefGoogle Scholar
  39. Saunders CD, Hausfater G (1985) Influence of tick density on baboon grooming behaviour. Am J Primatol 8:362Google Scholar
  40. Shutt K, MacLarnon A, Heistermann M, Semple S (2007) Grooming in Barbary macaques: better to give than to receive? Biol Lett 3:231–233PubMedCrossRefGoogle Scholar
  41. Silk JB, Alberts SC, Altmann J (2003) Social bonds of female baboons enhance infant survival. Science 302:1231–1234PubMedCrossRefGoogle Scholar
  42. Silk JB, Altmann J, Alberts SC (2006) Social relationships among adult female baboons (papio cynocephalus) I. Variation in the strength of social bonds. Behav Ecol Sociobiol 61:183–195CrossRefGoogle Scholar
  43. Slate J, David P, Dodds KG, Veenvliet BA, Glass BC, Broad TE, McEwan JC (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265PubMedCrossRefGoogle Scholar
  44. Smith K, Alberts SC, Altmann J (2003) Wild female baboons bias their social behaviour towards paternal half-sisters. P Roy Soc Lond B 270:503–510CrossRefGoogle Scholar
  45. Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5:439–448CrossRefGoogle Scholar
  46. Sterck EHM, Watts DP, van Schaick CP (1997) The evolution of female social relationships in nonhuman primates. Behav Ecol Sociobiol 41:291–309CrossRefGoogle Scholar
  47. Sun F, Cheng R, Flanders WD, Yang Q, Khoury MJ (1999) Whole genome association studies for genes affecting alcohol dependence. Genet Epidemiol Suppl 1:337–342Google Scholar
  48. Tiira K, Laurila A, Peuhkuri N, Piironen J, Ranta E, Primmer CR (2003) Aggressiveness is associated with genetic diversity in landlocked salmon (Salmo salar). Mol Ecol 12:2399–2407PubMedCrossRefGoogle Scholar
  49. Tiira KA, Laurila A, Enberg K, Piironen J, Aikio S, Ranta E, Primmer CR (2006) Do dominants have higher heterozygosity? Social status and genetic variation in brown trout, Salmo trutta. Behav Ecol Sociobiol 59:657–665CrossRefGoogle Scholar
  50. Trefilov A, Berard J, Krawczak M, Schmidtke J (2000) Natal dispersal in rhesus macaques is related to serotonin transporter gene promoter variation. Behav Genet 30:295–301PubMedCrossRefGoogle Scholar
  51. Wang PW, Iannantuoni K, Davis EM, Espinosa III R, Stoffel M, Le Beau MM (1998) Refinement of the commonly deleted segment in myeloid leukemias with a del(20q). Genes Chromosomes Cancer 21:75–81PubMedCrossRefGoogle Scholar
  52. Widdig A, Nürnberg P, Krawczak M, Streich W, JBercovitch FB (2002) Affiliation and aggression among adult female rhesus macaques: a genetic analysis of paternal cohorts. Behaviour 139:371–391CrossRefGoogle Scholar
  53. Widdig A, Nürnberg P, Krawczak M, Streich WJ, Bercovitch FB (2001) Paternal relatedness and age-proximity regulate social relationships among adult female rhesus macaques. Proc Natl Acad Sci USA 98:13769–13773PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marie J. E. Charpentier
    • 1
    • 2
    Email author
  • Franck Prugnolle
    • 3
  • Olivier Gimenez
    • 2
    • 4
  • Anja Widdig
    • 5
    • 6
  1. 1.Department of BiologyDuke UniversityDurhamUSA
  2. 2.Centre d’Ecologie Fonctionnelle et EvolutiveCNRSMontpellierFrance
  3. 3.Génétique et Evolution des Maladies InfectieusesIRD-CNRSMontpellier Cedex 05France
  4. 4.Centre for Research into Ecological and Environmental ModellingUniversity of St AndrewsSt AndrewsScotland
  5. 5.Department of PrimatologyMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
  6. 6.Caribbean Primate Research CenterSabana SecaUSA

Personalised recommendations