Behavior Genetics

, Volume 38, Issue 2, pp 185–194 | Cite as

Measurement of Segregating Behaviors in Experimental Silver Fox Pedigrees

  • Anna V. Kukekova
  • L. N. Trut
  • K. Chase
  • D. V. Shepeleva
  • A. V. Vladimirova
  • A. V. Kharlamova
  • I. N. Oskina
  • A. Stepika
  • S. Klebanov
  • H. N. Erb
  • G. M. Acland
Original Research

Abstract

Strains of silver foxes, selectively bred at the Institute of Cytology and Genetics of the Russian Academy of Sciences, are a well established, novel model for studying the genetic basis of behavior, and the processes involved in canine domestication. Here we describe a method to measure fox behavior as quantitative phenotypes which distinguish populations and resegregate in experimental pedigrees. We defined 50 binary observations that nonredundantly and accurately distinguished behaviors in reference populations and cross-bred pedigrees. Principal-component analysis dissected out the independent elements underlying these behaviors. PC1 accounted for >44% of the total variance in measured traits. This system clearly distinguished tame foxes from aggressive and wildtype foxes. F1 foxes yield intermediate values that extend into the ranges of both the tame and aggressive foxes, while the scores of the backcross generation resegregate. These measures can thus be used for QTL mapping to explore the genetic basis of tame and aggressive behavior in foxes, which should provide new insights into the mechanisms of mammalian behavior and canine domestication.

Keywords

Canidae Vulpes vulpes Interspecies tameness Attack Domestication 

Supplementary material

10519_2007_9180_MOESM1_ESM.xls (89 kb)
Supplementary Table 1 311 traits selected through an ethological survey of video records capturing behavior of foxes in the standard ICG test. (XLS 89 kb)
10519_2007_9180_MOESM2_ESM.xls (26 kb)
Supplementary Table 2 PC1 loadings for data sets 1, 2, and 3. (XLS 26 kb)

References

  1. Acland GM et al (2004) Resegregating behaviors in the silver fox. A model system for mapping sociability. http://www.ashg.org/genetics/abstracts/abs04/f2300.htm
  2. Afifi A, Clark VA, May S (2004) Computer-aided multivariate analysis. Chapman and Hall/CRC, p 489Google Scholar
  3. Almasy L, Blangero J (1998) Multipoint quantitative trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211. http://www.sfbr.org/solar/ Google Scholar
  4. Blanchard RJ, Blanchard CD (2005) Some suggestions for revitalizing aggression research. Novartis Found Symp 268:4–12PubMedCrossRefGoogle Scholar
  5. Dohoo I, Martin W, Stryn H (2003) Veterinary epidemiologic research. AVC Inc., CanadaGoogle Scholar
  6. Flint J et al (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6(4):271–286PubMedCrossRefGoogle Scholar
  7. Harri M et al (2003) Behavioural and physiological differences between silver foxes selected and not selected for domestic behaviour. Anim Welf 12:305–314Google Scholar
  8. Hsu Y, Serpell JA (2003) Development and validation of a questionnaire for measuring behavior and temperament traits in pet dogs. J Am Vet Med Assoc 223(9):1293–1300PubMedCrossRefGoogle Scholar
  9. Kendler KS, Greenspan RJ (2006) The nature of genetic influences on behavior: lessons from “simpler” organisms. Am J Psychiatry 163(10):1683–1694PubMedCrossRefGoogle Scholar
  10. Kukekova AV et al (2004) A marker set for construction of a genetic map of the silver fox (Vulpes vulpes). J Heredity 95:185–194CrossRefGoogle Scholar
  11. Kukekova AV et al (2005) The genetics of domesticated behavior in canids: What can dogs and silver foxes tell us about each other? Chapter 21. In: Ostrander EA, Giger U, Lindblad-Toh K (eds) The dog and its genome. Cold Spring Harbor Laboratory Press, Woodbury, pp 515–537Google Scholar
  12. Kukekova AV et al (2007) A meiotic linkage map of the silver fox, aligned and compared to the canine genome. Genome Res 17(3):387–399PubMedCrossRefGoogle Scholar
  13. Lindblad-Toh K et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438(7069):803–819PubMedCrossRefGoogle Scholar
  14. Scott JP, Fuller JL (1965) Genetics and the social behavior of the dog. The University of Chicago Press, Chicago and London, p 468Google Scholar
  15. Serpell JA, Hsu Y (2001) Development and validation of a novel method for evaluating behavior and temperament in guide dogs. Appl Anim Behav Sci 72(4):347–364PubMedCrossRefGoogle Scholar
  16. Suomi SJ (2006) Risk, resilience, and gene x environment interactions in rhesus monkeys. Ann NY Acad Sci 1094:52–62PubMedCrossRefGoogle Scholar
  17. Svartberg K, Forkman B (2002) Personality traits in the domestic dogs (Canis familiaris). Appl Anim Behav Sci 79:133–155CrossRefGoogle Scholar
  18. Trut LN (1980a) The genetics and phenogenetics of domestic behaviour. Problems in general genetics. Proceeding of the XIV International Congress of Genetics, vol 2, book 2:123–136Google Scholar
  19. Trut LN (1980b) The role of behavior in domestication-associated changes in animals as revealed with the example of silver fox. Doctoral (Biol.) dissertation, Institute of Cytology and Genetics, Novosibirsk, RussiaGoogle Scholar
  20. Trut LN (1999) Early canid domestication: the farm fox experiment. Am Sci 87:160–169CrossRefGoogle Scholar
  21. Trut LN (2001) Experimental studies of early canid domestication. In: The genetics of the dog. CABI, p 15–43Google Scholar
  22. Trut LN, Pliusnina IZ, Os’kina IN (2004) An experiment on fox domestication and debatable issues of evolution of the dog. Genetika 40:794–807PubMedGoogle Scholar
  23. Vasilieva LL, Trut LN (1990) The use of the method of principal components for phenogenetic analysis of the integral domestication trait. Genetika 26(3):516–524Google Scholar
  24. Wayne RK et al (1997) Molecular systematics of the canidae. Syst Biol 46:622–653PubMedCrossRefGoogle Scholar
  25. Williamson DE et al (2003) Heritability of fearful-anxious endophenotypes in infant rhesus macaques: a preliminary report. Biol Psychiatry 53(4):284–291PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anna V. Kukekova
    • 1
  • L. N. Trut
    • 2
  • K. Chase
    • 3
  • D. V. Shepeleva
    • 2
  • A. V. Vladimirova
    • 2
  • A. V. Kharlamova
    • 2
  • I. N. Oskina
    • 2
  • A. Stepika
    • 2
  • S. Klebanov
    • 4
  • H. N. Erb
    • 5
  • G. M. Acland
    • 1
  1. 1.James A. Baker Institute for Animal HealthCornell UniversityIthacaUSA
  2. 2.Institute of Cytology and Genetics of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Department of BiologyUniversity of UtahSalt Lake CityUSA
  4. 4.New York Obesity Research CenterSt. Luke’s-Roosevelt Hospital CenterNew YorkUSA
  5. 5.Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaUSA

Personalised recommendations