Behavior Genetics

, Volume 37, Issue 1, pp 61–78 | Cite as

Animal Models Relevant to Schizophrenia and Autism: Validity and Limitations

  • Sylvie Tordjman
  • Dominique Drapier
  • Olivier Bonnot
  • Rozenn Graignic
  • Sylvia Fortes
  • David Cohen
  • Bruno Millet
  • Claudine Laurent
  • Pierre L. Roubertoux
Original Paper


Development of animal models is a crucial issue in biological psychiatry. Animal models provide the opportunity to decipher the relationships between the nervous system and behavior and they are an obligatory step for drug tests. Mouse models or rat models to a lesser extent could help to test for the implication of a gene using gene targeting or transfecting technologies. One of the main problem for the development of animal models is to define a marker of the psychiatric disorder. Several markers have been suggested for schizophrenia and autism, but for the moment no markers or etiopathogenic mechanisms have been identified for these disorders. We examined here animal models related to schizophrenia and autism and discussed their validity and limitations after first defining these two disorders and considering their similarities and differences. Animal models reviewed in this article test mainly behavioral dimensions or biological mechanisms related to autistic disorder or schizophrenia rather than providing specific categorical models of autism or schizophrenia. Furthermore, most of these studies focus on a behavioral dimension associated with an underlying biological mechanism, which does not correspond to the complexity of mental disorders. It could be useful to develop animal models relevant to schizophrenia or autism to test a behavioral profile associated with a biological profile. A multi-trait approach seems necessary to better understand multidimensional disorders such as schizophrenia and autism and their biological and clinical heterogeneity. Finally, animal models can help us to clarify complex mechanisms and to study relationships between biological and behavioral variables and their interactions with environmental factors. The main interest of animal models is to generate new pertinent hypotheses relevant to humans opening the path to innovative research.


Psychiatry Autism Schizophrenia Animal models Neurobiological similarity Behavioral similarity Genetics Brain 


  1. Abraini JH, Ansseau M, Fechtali T (1993) Pressure-induced disorders in neurotransmission and spontaneous behavior in rats: an animal model of psychosis. Biol Psychiatry 34:622–629PubMedGoogle Scholar
  2. Alaghband-Rad J, McKenna K, Gordon CT (1995) Childhood onset schizophrenia: the severity of premorbid course. J Am Acad Child Adolesc Psychiatry 34:1275–1283Google Scholar
  3. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders (4th edn. Text revision). American Psychiatric Association, Washington, DCGoogle Scholar
  4. Andres C (2002) Molecular genetics and animal models in autistic disorder. Brain Res Bull 57(1):109–119PubMedGoogle Scholar
  5. Asarnow JR, Tompson MC, Goldstein MJ (1994) Childhood-onset schizophrenia: a followup study. Schizophr Bull 20(4):599–617PubMedGoogle Scholar
  6. Bachevalier J (1996) Brief report: medial temporal lobe and autism: a putative animal model in primates. J Autism Dev Disord 26(2):217–220PubMedGoogle Scholar
  7. Bailer J, Brauer W, Rey ER (1996) Premorbid adjustment as predictor of outcome in schizophrenia results of a prospective study. Acta Psychiatr Scand 93(5):368–377PubMedGoogle Scholar
  8. Bailey A, Luthert P, Dean A (1998) A clinicopathological study of autism. Brain 121:889–905PubMedGoogle Scholar
  9. Baum KM, Walker EF (1995) Childhood behavioral precursors of adult symptom dimensions in schizophrenia. Schizophr Res 16:111–120PubMedGoogle Scholar
  10. Bauman ML, Kemper TL (1985) Histoanatomic observations in the brain in early infantile autism. Neurology 35:866–874PubMedGoogle Scholar
  11. Bauman ML, Le May M, Bauman RA, Rosenberger PB (1985) Computerized tomographic (CT) observations of the posterior fossa in early infantile autism (abstract). Neurology 35(1 Suppl):247SGoogle Scholar
  12. Baxter LL, Moran TH, Richtsmeier JT, Troncoso J, Reeves RH (2000) Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum Mol Genet 9:195–202PubMedGoogle Scholar
  13. Bender L, Faetra G (1972) The relationship between childhood and adult schizophrenia. In: Kaplan AR (ed) Genetic factors in schizophrenia. Charles C. Thomas Publisher, Springfield III, pp 28–64Google Scholar
  14. Berger P, Watson S, Akil H, Barchas JD (1981) Clinical studies on the role of endorphins in schizophrenia. Mod Probl Pharmacopsychiatr 17:226–235Google Scholar
  15. Bleuler E (1911) Dementia Praecox oder Gruppe der Schizophrenien. Handbuch der Psychiatrie, Leipzig, AschaffenburgGoogle Scholar
  16. Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188PubMedGoogle Scholar
  17. Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343PubMedGoogle Scholar
  18. Brambilla F, Facchinetti F, Petraglia F, Vanzulli L, Genazzani AR (1984) Secretion pattern of endogenous opioids in chronic schizophrenia. Am J Psychiatry 141:1183–1188PubMedGoogle Scholar
  19. Campbell M, Anderson LT, Small AM, Locascio JJ, Lynch NS, Choroco MC (1990) Naltrexone in autistic children: a double-blind and placebo-controlled study. Psychopharmacol Bull 26:130–135PubMedGoogle Scholar
  20. Cantor S, Evans J, Pearce J, Pezzot-Pearce T (1982) Childhood schizophrenia: present but not accounted for. Am J Psychiatry 139:758–762PubMedGoogle Scholar
  21. Carpenter WT, Heinrichs DW, Wagman AM (1988) Deficit and nondeficit forms of schizophrenia: the concept. Am J Psychiatry 145:578–583PubMedGoogle Scholar
  22. Caston J, Yon E, Mellier D, Godfrey HP, Delhaye-Bouchaud N, Mariani J (1998) An animal model of autism: behavioural studies in the GS guinea-pig. Eur J Neurosci 10(8):2677–2684PubMedGoogle Scholar
  23. Chamberlain RS, Herman BH (1990) A novel biochemical model linking dysfunctions in brain melatonin, proopiomelanocortin peptides, and serotonin in autism. Biol Psychiatry 28:773–793PubMedGoogle Scholar
  24. Chisaka O, Musci TS, Capecchi MR (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox 1.6. Nature 355:516–520PubMedGoogle Scholar
  25. Christison GW, Atwater GE, Dunn LA, Kilts CD (1988) Haloperidol enhancement of latent inhibition: relation to therapeutic action? Biol Psychiatry 23:746–749PubMedGoogle Scholar
  26. Chua SE, Murray RM (1996) The neurodevelopmental theory of schizophrenia: evidence concerning structure and neuropsychology. Ann Med 28:547–555PubMedGoogle Scholar
  27. Collins JS, Schroer RJ, Bird J, Michaelis RC (2003) The HOXA1 A218G polymorphism and autism: lack of association in white and black patients from the South Carolina Autism Project. J Autism Dev Disord 33:343–348PubMedGoogle Scholar
  28. Conciatori M, Stodgell CJ, Hyman SL, O’bara M, Militerni R, Bravaccio C, Trillo S, Montecchi F, Schneider C, Melmed R, Elia M, Crawford L, Spence SJ, Muscarella L, Guarnieri V, D’agruma L, Quattrone A, Zelante L, Rabinowitz D, Pascucci T, Puglisi-Allegra S, Reichelt KL, Rodier PM, Persico AM (2004) Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biol Psychiatry 55:413–419PubMedGoogle Scholar
  29. Courchesne E, Saitoh O, Yeung CR, Press GA, Lincoln AJ, Haas RH, Schreibman L (1994) Abnormalities of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am J Roentgenol 162:123–130PubMedGoogle Scholar
  30. Courchesne E, Yeung-Courchesne R, Press GA, Hesslink JR, Jernigan TL (1987) Hypoplasia of cerebellar vermal lobules VI & VII in autism. N Engl J Med 318:1349–1354CrossRefGoogle Scholar
  31. Crawley JN (2004) Designing mouse behavioral tasks relevant to autistic-like behaviors. MRDD Res Rev 10:248–258Google Scholar
  32. Devlin B, Bennett P, Cook EH, Dawson G, Gonen D, Grigorenko EL, Mcmahon W, Pauls D, Smith M, Spence MA, Schellenberg GD (2002) No evidence for linkage of liability to autism to HOXA1 in a sample from the CPEA network. Am J Med Genet 114:667–672PubMedGoogle Scholar
  33. Dihoff RE, Hetznecker W, Brosvic GM, Carpenter LN, et al (1993) Ordinal measurement of autistic behavior: a preliminary report. Bull Psychonom Soc 31:287–290Google Scholar
  34. Dunn LA, Atwater GE, Kilts CD (1993) Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl) 112:315–323Google Scholar
  35. Ellenbroek BA, Artz MT, Cools AR (1991) The involvement of dopamine D1 and D2 receptors in the effects of the classical neuroleptic haloperidol and the atypical neuroleptic clozapine. Eur J Pharmacol 196:103–108PubMedGoogle Scholar
  36. Ellenbroek BA, Geyer MA, Cools AR (1995) The behavior of APO-SUS rats in animal models with construct validity for schizophrenia. J Neurosci 15:7604–7611PubMedGoogle Scholar
  37. Ellenbroek BA, Willemen AP, Cools AR (1989) Are antagonists of dopamine D1 receptors drugs that attenuate both positive and negative symptoms of schizophrenia? A pilot study in Java monkeys. Neuropsychopharmacology 2:191–199PubMedGoogle Scholar
  38. Engelmann M, Landgraf R (1994) Microdialysis administration of vaso-pressin into the septum improves social recognition in Brattleboro rats. Physiol Behav 55:145–149PubMedGoogle Scholar
  39. Feldon J, Weiner I (1991) The latent inhibition model of schizophrenic attention disorder. Haloperidol and sulpiride enhance rats’ ability to ignore irrelevant stimuli. Biol Psychiatry 29:635–646PubMedGoogle Scholar
  40. Ferguson JN, Aldag JM, Insel TR, Young LJ (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci 21:8278–8285PubMedGoogle Scholar
  41. Ferguson JN, Young LJ, Hearn EF, Matzuk MM, Insel TR, Winslow JT (2000) Social amnesia in mice lacking the oxytocin gene. Nat Genet 25:284–287PubMedGoogle Scholar
  42. Filipek PA, Richelme C, Kennedy DN, Rademacher J, Pitcher DA, Zidel SY, Caviness VS (1992) Morphometric analysis of the brain in developmental language disorders and autism. Ann Neurol 32:475Google Scholar
  43. Fisch GS (2005) Invited comment. Syndromes and epistemology I: autistic spectrum disorders. Am J Med. Genet 135A:117–119Google Scholar
  44. Fone KC, Nutt DJ (2005) Stimulants: use and abuse in the treatment of attention deficit hyperactivity disorder. Curr Opin Pharmacol 1:87–93Google Scholar
  45. Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H (1991) Elementary neuronal dysfunctions in schizophrenia. Schizophr Res 4:233–243PubMedGoogle Scholar
  46. Frescka E, Davis KL (1991) The opioid model in psychiatric research. In: Nemeroff CB (ed) Neuropeptides and psychiatric disorders. American Psychiatric Press, Washington, DC, pp 169–191Google Scholar
  47. Friedlander K (1946). Psychoanalytic orientation in child guidance work in Great Britain. Psychoanal Study Child 2:343–357PubMedGoogle Scholar
  48. Gaffney GR, Kuperman S, Tsai LT, Minchin S, Hassanein KM (1987) Mid-sagittal magnetic resonance imaging of autism. Br J Psychiatry 151:831–833PubMedCrossRefGoogle Scholar
  49. Gallagher L, Hawi Z, Kearney G, Fitzgerald M, Gill M (2004) No association between allelic variants of HOXA1/HOXB1 and autism. Am J Med Genet 124B:64–67PubMedGoogle Scholar
  50. Garber HJ, Ritvo E, Chui LC, Griswold VJ, Kashanian A, Oldendorf WH (1989) A magnetic resonance imaging study of autism: normal fourth ventricle size and absence of pathology. Am J Psychiatry 146:532–534PubMedGoogle Scholar
  51. Geyer MA, Markou A (2002) Animal models of psychiatric disorders. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, New York, pp 445–455Google Scholar
  52. Gray JA (1998) Integrating schizophrenia. Schizophr Bull 24:249–266PubMedGoogle Scholar
  53. Green L, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 50:609–613PubMedGoogle Scholar
  54. Guieu R, Samuelian JC, Coulouvrat H (1994) Objective evaluation of pain perception in patients with schizophrenia. Br J Psychiatry 164:253–255PubMedCrossRefGoogle Scholar
  55. Guimera J, Casas C, Pucharcos C, Solans A, Domenech A, Planas M, Asley J, Lovett M, Estivill X, Pritchard MA (1996) A human homologue of Drosophila minibrain (MBN) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum Mol Genet 9:1305–1310Google Scholar
  56. Harlow HF, McKinney WT (1971) Non-human primates and psychoses. J Autism Child Schiz 1:368–375Google Scholar
  57. Herman BH, Panksepp J (1978) Effects of morphine and naloxone on separation distress and approach attachment: evidence for opiate medication of social affect. Pharmacol Biochem Behav 9:213–220PubMedGoogle Scholar
  58. Holtum JR, Minshew NJ, Sanders RS, Phillips NE (1992) Magnetic resonance imaging of the posterior fossa in autism. Biol Psychiatry 32:1091–1101Google Scholar
  59. Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:295–298Google Scholar
  60. Houpt KA, McDonell SM (1993) Equine stereotypies. Comp Contin Educ Pract Vet 15:1265–1272Google Scholar
  61. Ingram JL, Peckham SM, Tisdale B, Rodier PM (2000a) Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol 22:319–324Google Scholar
  62. Ingram JL, Stodgell CJ, Hyman SL, Figlewicz DA, Weitkamp LR, Rodier PM (2000b) Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology 62:393–405Google Scholar
  63. Insel TR, O’Brien DJ, Leckman JF (1999) Oxytocin, vasopressin, and autism: is there a connection? Biol Psychiatry 45:145–157PubMedGoogle Scholar
  64. Ito M (1998) Cerebellar learning in vestibulo-ocular reflex. Trends Cognit Sci 2:313–321Google Scholar
  65. Jacobson JW, Ackerman LJ (1990) Differences in adaptive functioning among people with autism or mental retardation. J Autism Dev Disord 20:205–219PubMedGoogle Scholar
  66. Jansen LMC (1998) Blunted cortisol response to a psychosocial stressor in schizophrenia. Schizophr Res 33:87–94PubMedGoogle Scholar
  67. Jansen LMC, Gispen-De Wied CC, Van Der Gaag RJ, Ten Hove F, Willemsenswinkels SWM, Harteveld E, Van Engeland H (2000) Unresponsiveness to psychosocial stress in a subgroup of autistic-like children, multiple complex developmental disorder. Psychoneuroendocrinology 25:753–764PubMedGoogle Scholar
  68. Kahne D, Tudorica A, Borella A, Shapiro L, Johnstone F, Huang W, Whitaker-Azmitia PM (2002) Behavioral and magnetic resonance spectroscopic studies in the rat hyperserotonemic model of autism. Physiol Behav 75:403–410PubMedGoogle Scholar
  69. Kalat JM (1978). Speculations or similarities between autism and opiate addiction. J Autism Child Schizophr 8:477–479PubMedGoogle Scholar
  70. Kanner L (1943) Austistic disturbances of affective contact. Nervous Child 32:217–253Google Scholar
  71. Kilts CD (2001) The changing roles and targets for animal models of schizophrenia. Biol Psychiatry 50:845–855PubMedGoogle Scholar
  72. Kleiman MD, Neff S, Rosman NP (1992) The brain in infantile autism: are posterior fossa structures abnormal? Neurology 42:753–760PubMedGoogle Scholar
  73. Kline NS, Li CH, Lehmann HE, Lajtha A, Laski E, Cooper T (1977) Beta-endorphin-induced changes in schizophrenic and depressed patients. Arch Gen Psychiatry 34:1111–1113PubMedGoogle Scholar
  74. Konstantareas MM, Hewitt T (2001) Autistic disorder and schizophrenia: diagnostic overlaps. J Autism Dev Disord 31(1):19–28PubMedGoogle Scholar
  75. Krause I, He XS, Gershwin ME, Shoenfeld Y (2002) Brief report: immune factors in autism: a critical review. J Autism Dev Disord 32:337–345PubMedGoogle Scholar
  76. Krauss H, Marwinski K, Schulze T, Mueller DJ, Held T, Rietschel M, Maier W, Freyberger HJ (2000) Reliability and validity of the German version of the Premorbid Adjustment Scale (PAS). Nervenarzt 71(3):188–194PubMedGoogle Scholar
  77. Kuehn MR, Bradley A, Robertson EJ, Evans MJ (1987) A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326:295–298PubMedGoogle Scholar
  78. Larsen TK, Mouridsen SE (1997) The outcome in children with childhood autism and Asperger syndrome originally diagnosed as psychotic. A 30-year follow-up study of subjects assessed as children. Eur Child Adol Psychiatr 6:181–190Google Scholar
  79. Lev-Ram V, Valsamis M, Masliah E, Levine S, Godfrey HP (1993) A novel non-ataxic guinea pigstrain with cerebrocortical and cerebellar abnormalities. Brain Res 606:325–331PubMedGoogle Scholar
  80. Li J, Tabor HK, Nguyen L, Gleason C, Lotspeich LJ, Spiker D, Risch N, Myers RM (2002) Lack of association between HOXA1 and HOXB1 gene variants and autism in 110 multiplex families. Am J Med Genet 114:24–30PubMedGoogle Scholar
  81. Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K, Stevens KE, Maccaferri G, McBain CJ, Sussman DJ, Wynshaw-Boris A (1997) Social interaction and sensorimotor gating abormalities in mice lacking Dvl1. Cell 90:895–905PubMedGoogle Scholar
  82. Lindstrom LH, Besev G, Gunne LM, Terenius L (1986) CSF levels of receptor-active endorphins in schizophrenic patients: correlations with symptomatology and monoamine metabolites. Psychiatry Res 19:93–100PubMedGoogle Scholar
  83. Lipska BK, Halim ND, Segal PN, Weinberg DR (2002) Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. J Neurosci 22:2835–2842PubMedGoogle Scholar
  84. Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239PubMedGoogle Scholar
  85. Lipska BK, Weinberger DR (2002) A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus. Neurotox Res 4:469–475PubMedGoogle Scholar
  86. Lubow RE (1973) Latent inhibition. Psychol Bull 79:398–407PubMedGoogle Scholar
  87. Malhotra AK, Goldman D, Mazzanti C, Clifton A, Breier A, Pickard D (1998) A functional serotonin transporter (5-HTT) polymorphism is associated with psychosis in neuroleptic-free schizophrenics. Mol Psychiatry 3:328–332PubMedGoogle Scholar
  88. Marcotte ER, Pearson DM, Srivastava LK (2001) Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 26(5):395–410PubMedGoogle Scholar
  89. McKinney WT (1977) Biobehavioral models of depression in monkeys. In: Usdin E, Hanin I (eds) Animal models in psychiatry and neurology. Pergamon Press, Oxford, pp 117–126Google Scholar
  90. Modahl C, Green L, Fein D, Morris M, Waterhouse L, Feinstein C, Levin H (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43:270–277PubMedGoogle Scholar
  91. Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 33:275–307PubMedGoogle Scholar
  92. Mueser KT, Bellack AS, Douglas MS, Morrison RL (1991) Prevalence and stability of social skill deficits in schizophrenia. Schizophr Res 5:167–176PubMedGoogle Scholar
  93. Murcia CL, Gulden F, Herrup K (2005) A question of balance: a proposal for new mouse models of autism. Int J Devl Neuroscience 23:265–275Google Scholar
  94. Nielsen EB, Lyon M, Ellison G (1983) Apparent hallucinations in monkeys during around-the-clock amphetamine for seven to fourteen days. Possible relevance to amphetamine psychosis. J Nerv Ment Dis 171:222–233PubMedCrossRefGoogle Scholar
  95. Panksepp J (1979) A neurochemical theory of autism. Trends Neurosci 2:174–177Google Scholar
  96. Panksepp J, Herman BH, Vilberg T, Bishop P, DeEskinazi FG (1980a) Endogenous opioids and social behavior. Neurol Biobehav Rev 4:473–487Google Scholar
  97. Panksepp J, Meeker R, Bean NJ (1980b) The neurochemical control of crying. Pharmacol Biochem Behav 12:437–443Google Scholar
  98. Panksepp J, Sahley TL (1987) Possible brain opioid involvement in disrupted social intent and language development of autism. In: Schopler E, Mesibov GB (eds) Neurobiological issues in autism. Plenum Press, New York, pp 357–372Google Scholar
  99. Panksepp J, Siviy SM, Normansell LA (1985) Brain opioids and social emotions. In: Reite M, Field T (eds) The psychobiology of attachment and separation. Academic Press, New York, pp 3–49Google Scholar
  100. Panksepp J, Vilberg T, Bean NJ, Coy DH, Kastin AJ (1978) Reduction of distress vocalization in chicks by opiate-like peptides. Brain Res Bull 3:663–667PubMedGoogle Scholar
  101. Peters SL, Gray JA, Joseph MH (1991) Pre-weaning non-handling of rats disrupts latent inhibition in males, and results in persisting sex- and area-dependent increases in dopamine and serotonin turnover. Behav Pharmaco 12:215–223Google Scholar
  102. Piven J, Nehme E, Simon J, Barta P, Pearlson G, Folstein S (1992) Magnetic resonance imaging in autism: measurement of the cerebellum, pons, and fourth ventricle. Biol Psychiatry 31:491–504PubMedGoogle Scholar
  103. Pletnikov MV, Rubin SA, Moran TH, Carbone KM (2003) Exploring the cerebellum with a new tool: neonatal Borna disease virus (BDV) infection of the rat’s brain. Cerebellum 2(1):62–70PubMedGoogle Scholar
  104. Pletnikov MV, Rubin SA, Vasudevan K, Moran TH, Carbone KM (1999) Developmental brain injury associated with abnormal play behavior in neonatally Borna disease virus-infected Lewis rats: a model of autism. Behav Brain Res 100:43–50PubMedGoogle Scholar
  105. Poznanski EO (1976) Children’s reactions to pain: a psychiatrist’s perspective. Clin Pediatr 15:1114–1119Google Scholar
  106. Rand MS (2004) Selection of animal models. Research animal methods. University of Arizona, TucsonGoogle Scholar
  107. Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A (1986) Lower purkinje cell counts in the cerebellum of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report. Am J Psychiatry 143:862–866PubMedGoogle Scholar
  108. Robbins TW, Sahakian BJ (1979) “Paradoxical” effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioural pharmacology. Neuropharmacology 18:931–950PubMedGoogle Scholar
  109. Robins LN, Helzer JE (1986) Diagnostic and clinical assessment: the current state of psychiatric diagnosis. Ann Rev Psychol 37:409–432Google Scholar
  110. Rodier PM, Ingram JL, Tisdale B, Croog VJ (1997) Linking etiologies in humans and animal models: studies of autism. Reprod Toxicol 11:417–422PubMedGoogle Scholar
  111. Romano V, Cali F, Mirisola M, Gambino GRDA, Di Rosa P, Seidita G, Chiavetta V, Aiello F, Canziani F, De Leo G, Ayala GF, Elia M (2003) Lack of association of HOXA1 and HOXB1 mutations and autism in Sicilian (Italian) patients. Mol Psychiatry 8:716–717PubMedGoogle Scholar
  112. Roubertoux PL, Guillot PV, Mortaud S, Pratte M, Jamon M, Cohen-Salmon C, Tordjman S (2005) Attack behaviors in mice: from factorial structure to quantitative trait loci mapping. Eur J Pharmacol 526(1–3):172–85PubMedGoogle Scholar
  113. Roubertoux PL, Kerdelhué B (2006) Trisomy 21: from chromosomes to mental retardation. Behav Genet 36:344–468Google Scholar
  114. Sahley TL, Panksepp J (1987) Brain opioids and autism: an updated analysis of possible linkages. J Autism Dev Disord 17:201–216PubMedGoogle Scholar
  115. Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359PubMedGoogle Scholar
  116. Sandman CA (1992) Various endogenous opioids and autistic behavior: a response to Gillberg (letter to the editor). J Autism Dev Disord 22:132–133Google Scholar
  117. Sandman CA, Barron JL, Chicz-Demet A, Demet EM (1991) Brief report: plasma β-endorphin and cortisol levels in autistic patients. J Autism Dev Disord 21:83–87PubMedGoogle Scholar
  118. Sandman CA, McGivern RF, Berka C, Walker JM, Coy DH, Kastin AJ (1979) Neonatal administration of beta-endorphin produces «chronic» insensitivity to thermal stimuli. Life Sci 25:1755–1760PubMedGoogle Scholar
  119. Schaefer GB, Thompson JN, Bodensteiner JB, McConnell JM, Kimberling WJ, Gay CT, Dutton WD, Hutchings DC, Gray SB (1996) Hypoplasia of the cerebellar vermis in neurogenetic syndromes. Ann Neurol 39:382–384PubMedGoogle Scholar
  120. Schmajuk NA (1987). Animal models for schizophrenia: the hippocampally lesioned animal. Schizophr Bull 13:317–327PubMedGoogle Scholar
  121. Shalev U, Feldon J, Weiner I (1998) Gender- and age-dependent differences in latent inhibition following pre-weaning non-handling: implications for a neurodevelopmental animal model of schizophrenia. Int J Dev Neurosci 16:279–288PubMedGoogle Scholar
  122. Shalev U, Weiner I (2001) Gender-dependent differences in latent inhibition following prenatal stress and corticosterone administration. Behav Brain Res 126:57–63PubMedGoogle Scholar
  123. Sher L (1997) Autistic disorder and the endogenous opioid system. Med Hypotheses 48:413–414PubMedGoogle Scholar
  124. Singh MK, Giles LL, Nasrallah HA (2006) Pain insensitivity in schizophrenia: trait or state marker? J Psychiatr Pract 12(2):90–102PubMedGoogle Scholar
  125. Solomon PR, Cride RA, Winkelman JW, Turi A, Kamer RM, Kaplan LJ (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biol Psychiatry 16:519–537PubMedGoogle Scholar
  126. Soubrié P, Simon P (1989) Les modèles animaux en psychopharmacologie. Confrontations Psy: Les modèles expérimentaux et la clinique psychiatrique 30:113–129Google Scholar
  127. Strömland K, Nordin V, Miller MT, Akerstrom B, Gillberg C (1994) Autism in thalidomide embryopathy: a population study. Dev Med Child Neurol 36:351–356PubMedCrossRefGoogle Scholar
  128. Swerdlow NR, Braff DL, Geyer MA, Koob GF (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychiatry 21:23–33PubMedGoogle Scholar
  129. Swerdlow NR, Braff DL, Masten VL, Geyer MA (1990) Schizophrenic-like sensorimotor gating abnormalities in rats following dopamine infusion into the nucleus accumbens. Psychopharmacology 101:414–420PubMedGoogle Scholar
  130. Swerdlow NR, Keith VA, Braff DL, Geyer MA (1991) Effects of spiperone, raclopride, SCH 23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle response in the rat. J Pharmacol Exp Ther 256:530–536PubMedGoogle Scholar
  131. Szatmari P, Merette C, Bryson SE, Thivierge J, Roy MA, Cayer M, Maziade M (2002) Quantifying dimensions in autism: a factor-analytic study. J Am Acad Child Adolesc Psychiatry 4:467–474Google Scholar
  132. Talebizadeh Z, Bittel DC, Miles JH, Takahashi N, Wang CH, Kibiryeva N, Butler MG (2002) No association between HOXA1 and HOXB1 genes and autism spectrum disorders (ASD). J Med Genet 39:70Google Scholar
  133. Tantam D (1988) Asperger’s syndrome. J Child Psychol Psychiatry 29:245–255PubMedGoogle Scholar
  134. Tanguay PE (2000) Pervasive developmental disorders: a 10-year review. J Am Acad Child Adolesc Psychiatry 39:1079–1095PubMedGoogle Scholar
  135. Thach WT (1998) What is the role of the cerebellum in motor learning and cognition? Trends Cognit Sci 2:331–337Google Scholar
  136. Tordjman S, Anderson G, Macbride A, Hetzig M, Snow M, Hall L, Ferrari P, Cohen DJ (1997) Plasma B. endorphin, adrenocorticotropin hormone and cortisol in autism. J Child Psychol Psychiatry 38(6):705–716PubMedGoogle Scholar
  137. Tordjman S, Antoine C, Cohen DJ, Gauvain-Piquard A, Carlier M, Roubertoux PL, Ferrari P. (1999). Etude des conduites autoagressives, de la réactivité à la douleur et de leurs interrelations chez les enfants autistes. L’Encéphale 25:122–134PubMedGoogle Scholar
  138. Tordjman S, Carlier M, Cohen D, Cesselin F, Bourgoin S, Colas-Linhart N, Petiet A, Perez-Diaz F, Hamon M, Roubertoux PL (2003) Aggression and the three opioid families (Endorphins, Enkephalins and Dynorphins) in mice. Behav Genet 33:529–536PubMedGoogle Scholar
  139. Tordjman S, Gutknecht L, Carlier M, Spitz E, Antoine C, Slama F, Carsalade V, Cohen DJ, Ferrari P, Roubertoux PL, Anderson GM (2001a) Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry 6:434–439Google Scholar
  140. Tordjman S, Mouchabac S, Botbol M (2001b) L’enfance des adolescents schizophrènes. Nervure 14:40–46Google Scholar
  141. Torres AR (2003) Is fever suppression involved in the etiology of autism and neurodevelopmental disorders? BMC Pediatr 3:9PubMedGoogle Scholar
  142. Turner CA, Presti MF, Newman HA, Bugenhagen P, Crnic L, Lewis MH (2001) Spontaneous stereotypy in an animal model of Down syndrome: Ts65Dn mice. Behav Genet 31(4):393–400PubMedGoogle Scholar
  143. Van Den Bosch RJ, Van Asma MJ, Rombouts R, Louwerens JW (1992) Coping style and cognitive dysfunction in schizophrenic patients. Br J Psychiatry Suppl 18:123–128PubMedGoogle Scholar
  144. Van Engeland H, Van Der Gaag RJ (1994) MCDD in childhood: a precursor of schizophrenic spectrum disorders. Schizophr Res 11:197Google Scholar
  145. Van Gent T, Heijnen CJ, Treffers PDA (1997) Autism and the immune system. J. Child Psychol Psychiat 38:337–349PubMedGoogle Scholar
  146. Van Wimersma A, Greidanus TJB, Van de Brug F, De Bruijckere LM, Pabst PHMA, Ruesink RW, Hulshof RLE, Van Berckel BNM, Arissen SM, De Koning EJP, Donker DK (1988) Comparison of bombesin, ACTH and beta-endorphin induced grooming: antagonism by haloperidol, naloxone and neurotensin. Ann NY Acad Sci 525:219–227Google Scholar
  147. Volkmar FR, Cohen DJ (1991) Comorbid association of autism and schizophrenia. Am J Psychiatry 148(12):1705–1707PubMedGoogle Scholar
  148. Wassink TH, Piven J, Vieland VJ, Huang J, Swiderski E, Pietila J, Braun T, Beck G, Folstein SE, Haines JL, Sheffield VC (2001) Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet 105:406–413PubMedGoogle Scholar
  149. Watson S, Akil H, Berger P, et al (1979) Some observations on the opiate peptides and schizophrenia. Arch Gen Psychiatry 36:35–41PubMedGoogle Scholar
  150. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669PubMedGoogle Scholar
  151. Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169:257–297PubMedGoogle Scholar
  152. Weiner I, Lubow RE, Feldon J (1984). Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology 83:194–199PubMedGoogle Scholar
  153. Weiss J, Kilts CD (1994) Animal models of depression and schizophrenia. In: Schatzberg A, Nemeroff C (eds) Textbook of psychopharmacology. American Psychiatric Press, Washington, pp 81–123Google Scholar
  154. Wiedl KH (1992) Assessment of coping with schizophrenia. Stressors, appraisals, and coping behaviour. Br J Psychiatry Suppl 18:114–122PubMedGoogle Scholar
  155. Wilkinson LS, Killcross SS, Humby T, Hall FS, Geyer MA, Robbins TW (1994) Social isolation in the rat produces developmentally specific deficits in prepulse inhibition of the acoustic startle response without disrupting latent inhibition. Neuropsychopharmacology 10(1):61–72PubMedGoogle Scholar
  156. Willemsen-Swinkels SHN, Buitelaar JK, Nijhof GF, Van Engeland H (1995) Failure of Naltrexone to reduce self-injurious and autistic behavior in mentally retarded adults: double-blind placebo controlled studies. Arch Gen Psychiatry 52:766–773PubMedGoogle Scholar
  157. World Health Organization (1993) The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. World Health Organization, GeneveGoogle Scholar
  158. Wu CL, Melton DW (1993) Production of a model for Lesch–Nyhan syndrome in hypoxanthine phophoribosyltransferase-deficient mice. Nat Genet 3:235–240PubMedGoogle Scholar
  159. Yan WL, Guan XY, Green ED, Nicolson R, Yap TK, Zhang J, Jacobsen LK, Krasnewich DM, Kumra S, Lenane MC, Gochman P, Damschroder-Williams PJ, Esterling LE, Long RT, Martin BM, Sitransky E, Rapoport JL, Ginns EI (2000) Childhood-onset schizophrenia/autistic disorder and t (1;7) reciprocal translocation: identification of a BAC contig spanning the translocation breakpoint al 7q21. Am J Med Genet 96(6):749–753PubMedGoogle Scholar
  160. Young LJ, Winslow JT, Wang Z, Gingrich B, Guo Q, Matzuk MM, Insel TR (1997) Gene targeting approaches to neuroendocrinology: oxytocin, maternal behavior, and affiliation. Horm Behav 31:221–231PubMedGoogle Scholar
  161. Zarifian E (1989) La Clinique et les modèles neurochimiques. Confrontations Psy: Les modèles expérimentaux et la clinique psychiatrique 30:107–111Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Sylvie Tordjman
    • 1
    • 2
  • Dominique Drapier
    • 3
  • Olivier Bonnot
    • 4
  • Rozenn Graignic
    • 5
  • Sylvia Fortes
    • 5
  • David Cohen
    • 4
  • Bruno Millet
    • 3
  • Claudine Laurent
    • 6
  • Pierre L. Roubertoux
    • 7
  1. 1.Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’AdolescentUniversité de Rennes 1 et Centre Hospitalier Guillaume RégnierRennesFrance
  2. 2.Laboratoire Psychologie de la perception, CNRS FRE 2929Université Paris 5ParisFrance
  3. 3.Service Hospitalo-Universitaire de Psychiatrie d’AdultesCentre Hospitalier Guillaume RégnierRennesFrance
  4. 4.Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987Université Pierre et Marie CurieParisFrance
  5. 5.CNRS FRE 2987Université Paris 6ParisFrance
  6. 6.Laboratory of Neurotoxicology, NIMH-NIHBethesdaUSA
  7. 7.Génomique Fonctionnelle, Laboratoire Plasticité et Physio-Pathologie de la Motricité, UMR 6196CNRS-Université de la MéditerranéeMarseilleFrance

Personalised recommendations