Behavior Genetics

, Volume 37, Issue 1, pp 18–30 | Cite as

Integrating Synapse Proteomics with Transcriptional Regulation

  • L. M. Valor
  • S. G. N. GrantEmail author
Original Paper


The mammalian postsynaptic proteome (PSP) comprises a highly interconnected set of approximately 1,000 proteins. The PSP is organized into macromolecular complexes that have a modular architecture defined by protein interactions and function. Signals initiated by neurotransmitter receptors are integrated by these complexes and their constituent enzymes to orchestrate multiple downstream cellular changes, including transcriptional regulation of genes at the nucleus. Genome wide transcriptome studies are beginning to map the sets of genes regulated by the synapse proteome. Conversely, understanding the transcriptional regulation of genes encoding the synapse proteome will shed light on synapse formation. Mutations that disrupt synapse signalling complexes result in cognitive impairments in mice and humans, and recent evidence indicates that these mutation change gene expression profiles. We discuss the need for global approaches combining genetics, transcriptomics and proteomics in order to understand cognitive function and disruption in diseases.


Synapse proteome Gene expression Transcription Genome-wide approaches 


  1. Ahn S, Ginty DD and Linden DJ (1999) A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23:559–568PubMedGoogle Scholar
  2. Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, Potkin SG, Sandman CA, Bunney WE Jr, Jones EG (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16:19–30PubMedGoogle Scholar
  3. Al-Shahrour F, Diaz-Uriarte R and Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578–580PubMedGoogle Scholar
  4. Alberini CM (1999) Genes to remember. J Exp Biol 202:2887–2891PubMedGoogle Scholar
  5. Antequera F (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 60:1647–1658PubMedGoogle Scholar
  6. Armstrong JD, Goddard NH and Shepherd D (2003) Neuroinformatics in model organisms. J Neurogenet 17:103–116PubMedGoogle Scholar
  7. Bading H (2000) Transcription-dependent neuronal plasticity the nuclear calcium hypothesis. Eur J Biochem 267:5280–5283PubMedGoogle Scholar
  8. Bai G, Zhuang Z, Liu A, Chai Y and Hoffman PW (2003) The role of the RE1 element in activation of the NR1 promoter during neuronal differentiation. J Neurochem 86:992–1005PubMedGoogle Scholar
  9. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36PubMedGoogle Scholar
  10. Barco A, Alarcon JM and Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703PubMedGoogle Scholar
  11. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedGoogle Scholar
  12. Begni S, Moraschi S, Bignotti S, Fumagalli F, Rillosi L, Perez J, Gennarelli M (2003) Association between the G1001C polymorphism in the GRIN1 gene promoter region and schizophrenia. Biol Psych 53:617–619Google Scholar
  13. Bessho Y, Nawa H, Nakanishi S (1994) Selective up-regulation of an NMDA receptor subunit mRNA in cultured cerebellar granule cells by K(+)-induced depolarization and NMDA treatment. Neuron 12:87–95PubMedGoogle Scholar
  14. Bessis A, Salmon AM, Zoli M, Le Novere N, Picciotto M, Changeux JP (1995) Promoter elements conferring neuron-specific expression of the beta 2-subunit of the neuronal nicotinic acetylcholine receptor studied in vitro and in transgenic mice. Neuroscience 69:807–819PubMedGoogle Scholar
  15. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634PubMedGoogle Scholar
  16. Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD, Darnell RB, Warren ST (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487PubMedGoogle Scholar
  17. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci USA 101:10458–10463PubMedGoogle Scholar
  18. Buratowski S (1994) The basics of basal transcription by RNA polymerase II. Cell 77:1–3PubMedGoogle Scholar
  19. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K and Gingeras TR (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499–509PubMedGoogle Scholar
  20. Chao DM, Gadbois EL, Murray PJ, Anderson SF, Sonu MS, Parvin JD and Young RA (1996) A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 380:82–85PubMedGoogle Scholar
  21. Chen X, Dunham C, Kendler S, Wang X, O’Neill FA, Walsh D, Kendler KS (2004) Regulator of G-protein signaling 4 (RGS4) gene is associated with schizophrenia in Irish high density families. Am J Med Genet B Neuropsychiatr Genet 129:23–26PubMedGoogle Scholar
  22. Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957PubMedGoogle Scholar
  23. Choudhary J, Grant SG (2004) Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci 7:440–445PubMedGoogle Scholar
  24. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T, Deshpande SN, B KT, Ferrell RE, Middleton FA, Devlin B, Levitt P, Lewis DA, Nimgaonkar VL (2002) Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 11:1373–1380PubMedGoogle Scholar
  25. Clinton SM, Meador-Woodruff JH (2004) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology 29:1353–1362PubMedGoogle Scholar
  26. Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH (2003) Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psych 160:1100–1109Google Scholar
  27. Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP, Choudhary JS, Grant SG (2005a) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97(Suppl. 1):16–23Google Scholar
  28. Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, Choudhary JS, Grant SG (2005b) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280:5972–5982Google Scholar
  29. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427PubMedGoogle Scholar
  30. Conkright MD, Guzman E, Flechner L, Su AI, Hogenesch JB, Montminy M (2003) Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell 11:1101–1108PubMedGoogle Scholar
  31. Das PM, Ramachandran K, vanWert J, Singal R (2004) Chromatin immunoprecipitation assay. Biotechniques 37:961–969PubMedGoogle Scholar
  32. De Blasi A, Conn PJ, Pin J, Nicoletti F (2001) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 22:114–120PubMedGoogle Scholar
  33. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030PubMedGoogle Scholar
  34. Docherty KE (1996) Gene transcription (essential techniques). John Wiley & Sons LtdGoogle Scholar
  35. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR (2003) MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 4:R7PubMedGoogle Scholar
  36. Down TA and Hubbard TJ (2005) NestedMICA: sensitive inference of over-represented motifs in nucleic acid sequence. Nucleic Acids Res 33:1445–1453PubMedGoogle Scholar
  37. Dracheva S, Marras SA, Elhakem SL, Kramer FR, Davis KL, Haroutunian V (2001) N-methyl-d-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am J Psych 158:1400–1410Google Scholar
  38. Duguid JR, Dinauer MC (1990) Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Res 18:2789–2792PubMedGoogle Scholar
  39. Eastwood SL, Burnet PW, Harrison PJ (1997a) GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptase-polymerase chain reaction (RT-PCR) study. Brain Res Mol Brain Res 44:92–98Google Scholar
  40. Eastwood SL, Kerwin RW, Harrison PJ (1997b) Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-preferring non-N-methyl-d-aspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biol Psych 41:636–643Google Scholar
  41. Eberwine J, Miyashiro K, Kacharmina JE, Job C (2001) Local translation of classes of mRNAs that are targeted to neuronal dendrites. Proc Natl Acad Sci USA 98:7080–7085PubMedGoogle Scholar
  42. Erbel-Sieler C, Dudley C, Zhou Y, Wu X, Estill SJ, Han T, Diaz-Arrastia R, Brunskill EW, Potter SS, McKnight SL (2004) Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci USA 101:13648–13653PubMedGoogle Scholar
  43. Euskirchen G, Royce TE, Bertone P, Martone R, Rinn JL, Nelson FK, Sayward F, Luscombe NM, Miller P, Gerstein M, Weissman S, Snyder M (2004) CREB binds to multiple loci on human chromosome 22. Mol Cell Biol 24:3804–3814PubMedGoogle Scholar
  44. Gachon F, Fonjallaz P, Damiola F, Gos P, Kodama T, Zakany J, Duboule D, Petit B, Tafti M, Schibler U (2004) The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev 18:1397–1412PubMedGoogle Scholar
  45. Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-d receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psych 157:1141–1149Google Scholar
  46. Geschwind DHE (2002) Microarrays for the neurosciences: an essential guide. Bradford BookGoogle Scholar
  47. Grant SG (2003) Synapse signalling complexes and networks: machines underlying cognition. Bioessays 25:1229–1235PubMedGoogle Scholar
  48. Grant SG (2006) The synapse proteome and phosphoproteome: a new paradigm for synapse biology. Biochem Soc Trans 34:59–63PubMedGoogle Scholar
  49. Grant SG, Marshall MC, Page KL, Cumiskey MA, Armstrong JD (2005) Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. Hum Mol Genet 14 Spec No. 2:R225–234PubMedGoogle Scholar
  50. Gu Y, McIlwain KL, Weeber EJ, Yamagata T, Xu B, Antalffy BA, Reyes C, Yuva-Paylor L, Armstrong D, Zoghbi H, Sweatt JD, Paylor R, Nelson DL (2002) Impaired conditioned fear and enhanced long-term potentiation in Fmr2 knock-out mice. J Neurosci 22:2753–2763PubMedGoogle Scholar
  51. Gurskaya NG, Diatchenko L, Chenchik A, Siebert PD, Khaspekov GL, Lukyanov KA, Vagner LL, Ermolaeva OD, Lukyanov SA, Sverdlov ED (1996) Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Anal Biochem 240:90–97PubMedGoogle Scholar
  52. Hannenhalli S, Levy S (2003) Transcriptional regulation of protein complexes and biological pathways. Mamm Genome 14: 611–619PubMedGoogle Scholar
  53. Hara E, Kato T, Nakada S, Sekiya S, Oda K (1991) Subtractive cDNA cloning using oligo(dT)30-latex and PCR: isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells. Nucleic Acids Res 19:7097–7104PubMedGoogle Scholar
  54. He L and Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531PubMedGoogle Scholar
  55. Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–490PubMedGoogle Scholar
  56. Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366PubMedGoogle Scholar
  57. Horiuchi Y, Arai M, Niizato K, Iritani S, Noguchi E, Ohtsuki T, Koga M, Kato T, Itokawa M, Arinami T (2006) A Polymorphism in the PDLIM5 Gene Associated with Gene Expression and Schizophrenia. Biol Psych 59:434–439Google Scholar
  58. Hsueh YP, Wang TF, Yang FC, Sheng M (2000) Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature 404: 298–302PubMedGoogle Scholar
  59. Hughes P, Dragunow M (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47:133–178PubMedGoogle Scholar
  60. Husi H, Grant SG (2001a) Isolation of 2000-kDa complexes of N-methyl-d-aspartate receptor and postsynaptic density 95 from mouse brain. J Neurochem 77:281–291CrossRefGoogle Scholar
  61. Husi H, Grant SG (2001b) Proteomics of the nervous system. Trends Neurosci 24:259–266Google Scholar
  62. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669PubMedGoogle Scholar
  63. Ibrahim HM, Hogg AJ, Jr., Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psych 157:1811–1823Google Scholar
  64. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119:1041–1054PubMedGoogle Scholar
  65. Itokawa M, Yamada K, Iwayama-Shigeno Y, Ishitsuka Y, Detera-Wadleigh S, Yoshikawa T (2003a) Genetic analysis of a functional GRIN2A promoter (GT)n repeat in bipolar disorder pedigrees in humans. Neurosci Lett 345:53–56Google Scholar
  66. Itokawa M, Yamada K, Yoshitsugu K, Toyota T, Suga T, Ohba H, Watanabe A, Hattori E, Shimizu H, Kumakura T, Ebihara M, Meerabux JM, Toru M, Yoshikawa T (2003b) A microsatellite repeat in the promoter of the N-methyl-d-aspartate receptor 2A subunit (GRIN2A) gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia. Pharmacogenetics 13:271–278Google Scholar
  67. Iwamoto K, Bundo M, Washizuka S, Kakiuchi C, Kato T (2004) Expression of HSPF1 and LIM in the lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia. J Hum Genet 49:227–231PubMedGoogle Scholar
  68. Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psych 9:984–997:979Google Scholar
  69. Jin P, Warren ST (2000) Understanding the molecular basis of fragile X syndrome. Hum Mol Genet 9:901–908PubMedGoogle Scholar
  70. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2:e363PubMedGoogle Scholar
  71. Kallunki P, Jenkinson S, Edelman GM, Jones FS (1995) Silencer elements modulate the expression of the gene for the neuron-glia cell adhesion molecule, Ng-CAM. J Biol Chem 270:21291–21298PubMedGoogle Scholar
  72. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038PubMedGoogle Scholar
  73. Kato A, Ozawa F, Saitoh Y, Hirai K and Inokuchi K (1997) vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett 412:183–189Google Scholar
  74. Kato T, Iwayama Y, Kakiuchi C, Iwamoto K, Yamada K, Minabe Y, Nakamura K, Mori N, Fujii K, Nanko S, Yoshikawa T (2005) Gene expression and association analyses of LIM (PDLIM5) in bipolar disorder and schizophrenia. Mol Psych 10:1045–1055Google Scholar
  75. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781PubMedGoogle Scholar
  76. Koleske AJ, Young RA (1994) An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469PubMedGoogle Scholar
  77. Kraner SD, Chong JA, Tsay HJ, Mandel G (1992) Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9:37–44PubMedGoogle Scholar
  78. Kuo WP, Jenssen TK, Butte AJ, Ohno-Machado L, Kohane IS (2002) Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 18:405–412PubMedGoogle Scholar
  79. Lemon B, Tjian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 14:2551–2569PubMedGoogle Scholar
  80. Li L, Suzuki T, Mori N, Greengard P (1993) Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc Natl Acad Sci USA 90:1460–1464PubMedGoogle Scholar
  81. Linden DJ (1996) A protein synthesis-dependent late phase of cerebellar long-term depression. Neuron 17:483–490PubMedGoogle Scholar
  82. Lonnerberg P, Schoenherr CJ, Anderson DJ, Ibanez CF (1996) Cell type-specific regulation of choline acetyltransferase gene expression. Role of the neuron-restrictive silencer element and cholinergic-specific enhancer sequences. J Biol Chem 271:33358–33365PubMedGoogle Scholar
  83. Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445PubMedGoogle Scholar
  84. Maeno-Hikichi Y, Chang S, Matsumura K, Lai M, Lin H, Nakagawa N, Kuroda S, Zhang JF (2003) A PKC epsilon-ENH-channel complex specifically modulates N-type Ca2+ channels. Nat Neurosci 6:468–475PubMedGoogle Scholar
  85. Maldonado E, Shiekhattar R, Sheldon M, Cho H, Drapkin R, Rickert P, Lees E, Anderson CW, Linn S, Reinberg D (1996) A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381:86–89PubMedGoogle Scholar
  86. Martens JA, Winston F (2003) Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13:136–142PubMedGoogle Scholar
  87. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34:D108–110PubMedGoogle Scholar
  88. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609PubMedGoogle Scholar
  89. Meng J, Meng Y, Hanna A, Janus C, Jia Z (2005) Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J Neurosci 25:6641–6650PubMedGoogle Scholar
  90. Merika M, Thanos D (2001) Enhanceosomes. Curr Opin Genet Dev 11:205–208PubMedGoogle Scholar
  91. Mieda M, Haga T, Saffen DW (1996) Promoter region of the rat m4 muscarinic acetylcholine receptor gene contains a cell type-specific silencer element. J Biol Chem 271:5177–5182PubMedGoogle Scholar
  92. Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468PubMedGoogle Scholar
  93. Mirnics K, Pevsner J (2005) Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 7:434–439Google Scholar
  94. Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P (2001) Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psych 6:293–301Google Scholar
  95. Miyatake R, Furukawa A, Suwaki H (2002) Identification of a novel variant of the human NR2B gene promoter region and its possible association with schizophrenia. Mol Psych 7: 1101–1106Google Scholar
  96. Mori N, Schoenherr C, Vandenbergh DJ, Anderson DJ (1992) A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9:45–54PubMedGoogle Scholar
  97. Morris DW, Rodgers A, McGhee KA, Schwaiger S, Scully P, Quinn J, Meagher D, Waddington JL, Gill M, Corvin AP (2004) Confirming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 125:50–53PubMedGoogle Scholar
  98. Mueller HT, Haroutunian V, Davis KL, Meador-Woodruff JH (2004) Expression of the ionotropic glutamate receptor subunits and NMDA receptor-associated intracellular proteins in the substantia nigra in schizophrenia. Brain Res Mol Brain Res 121:60–69PubMedGoogle Scholar
  99. Nguyen PV, Abel T, Kandel ER (1994) Requirement of a critical period of transcription for induction of a late phase of LTP Science 265:1104–1107PubMedGoogle Scholar
  100. Nourry C, Grant SG, Borg JP (2003) PDZ domain proteins: plug and play! Sci STKE 2003, RE7Google Scholar
  101. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378–1381PubMedGoogle Scholar
  102. Ohnuma T, Kato H, Arai H, Faull RL, McKenna PJ, Emson PC (2000) Gene expression of PSD95 in prefrontal cortex and hippocampus in schizophrenia. Neuroreport 11:3133–3137PubMedGoogle Scholar
  103. Okamoto S, Sherman K, Lipton SA (1999) Absence of binding activity of neuron-restrictive silencer factor is necessary, but not sufficient for transcription of NMDA receptor subunit type 1 in neuronal cells. Brain Res Mol Brain Res 74:44–54PubMedGoogle Scholar
  104. Pocklington AJ, Cumiskey M, Armstrong JD and Grant SGN (2006) The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol Syst Biol, onlineGoogle Scholar
  105. Pongrac J, Middleton FA, Lewis DA, Levitt P, Mirnics K (2002) Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem Res 27:1049–1063PubMedGoogle Scholar
  106. Roeder RG (1996) The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21:327–335PubMedGoogle Scholar
  107. Roh TY, Ngau WC, Cui K, Landsman D, Zhao K (2004) High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 22:1013–1016PubMedGoogle Scholar
  108. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344PubMedGoogle Scholar
  109. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512PubMedGoogle Scholar
  110. Santella L, Carafoli E (1997) Calcium signaling in the cell nucleus. Faseb J 11:1091–1109PubMedGoogle Scholar
  111. Saura CA, Chen G, Malkani S, Choi SY, Takahashi RH, Zhang D, Gouras GK, Kirkwood A, Morris RG, Shen J (2005) Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. J Neurosci 25:6755–6764PubMedGoogle Scholar
  112. Setou M, Nakagawa T, Seog DH, Hirokawa N (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288:1796–1802PubMedGoogle Scholar
  113. Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485PubMedGoogle Scholar
  114. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29PubMedGoogle Scholar
  115. Sikder D, Kodadek T (2005) Genomic studies of transcription factor-DNA interactions. Curr Opin Chem Biol 9:38–45PubMedGoogle Scholar
  116. Smid M, Dorssers LC (2004) GO-Mapper: functional analysis of gene expression data using the expression level as a score to evaluate Gene Ontology terms. Bioinformatics 20:2618–2625PubMedGoogle Scholar
  117. Soderling TR (1999) The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem Sci 24:232–236PubMedGoogle Scholar
  118. Steward O, Worley PF (2001) A cellular mechanism for targeting newly synthesized mRNAs to synaptic sites on dendrites. Proc Natl Acad Sci USA 98:7062–7068PubMedGoogle Scholar
  119. Sutcliffe JG, Foye PE, Erlander MG, Hilbush BS, Bodzin LJ, Durham JT, Hasel KW (2000) TOGA: an automated parsing technology for analyzing expression of nearly all genes. Proc Natl Acad Sci U S A 97:1976–1981PubMedGoogle Scholar
  120. Testa A, Donati G, Yan P, Romani F, Huang TH, Vigano MA, Mantovani R (2005) Chromatin immunoprecipitation (ChIP) on chip experiments uncover a widespread distribution of NF-Y binding CCAAT sites outside of core promoters. J Biol Chem 280:13606–13615PubMedGoogle Scholar
  121. Toro C, Deakin JF (2005) NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res 80:323–330PubMedGoogle Scholar
  122. Toyooka K, Iritani S, Makifuchi T, Shirakawa O, Kitamura N, Maeda K, Nakamura R, Niizato K, Watanabe M, Kakita A, Takahashi H, Someya T, Nawa H (2002) Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J Neurochem 83:797–806PubMedGoogle Scholar
  123. Tudor M, Akbarian S, Chen RZ, Jaenisch R (2002) Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci USA 99:15536–15541PubMedGoogle Scholar
  124. Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M, Zeeberg BR, Kane D, Weinstein JN, Blume J, Darnell RB (2005) Nova regulates brain-specific splicing to shape the synapse. Nat Genet 37:844–852PubMedGoogle Scholar
  125. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487PubMedGoogle Scholar
  126. Wang TF, Ding CN, Wang GS, Luo SC, Lin YL, Ruan Y, Hevner R, Rubenstein JL, Hsueh YP (2004) Identification of Tbr-1/CASK complex target genes in neurons. J Neurochem 91:1483–1492PubMedGoogle Scholar
  127. Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol 21:6820–6832PubMedGoogle Scholar
  128. West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3:921–931PubMedGoogle Scholar
  129. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, McCreadie RG, Buckland P, Sharkey V, Chowdari KV, Zammit S, Nimgaonkar V, Kirov G, Owen MJ, O’Donovan MC (2004) Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psych 55:192–195Google Scholar
  130. Wood IC, Roopra A, Buckley NJ (1996) Neural specific expression of the m4 muscarinic acetylcholine receptor gene is mediated by a RE1/NRSE-type silencing element. J Biol Chem 271: 14221–14225PubMedGoogle Scholar
  131. Yang SH, Sharrocks AD, Whitmarsh AJ (2003) Transcriptional regulation by the MAP kinase signaling cascades. Gene 320:3–21PubMedGoogle Scholar
  132. Yao WD, Gainetdinov RR, Arbuckle MI, Sotnikova TD, Cyr M, Beaulieu JM, Torres GE, Grant SG, Caron MG (2004) Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41:625–638PubMedGoogle Scholar
  133. Yauk CL, Berndt ML, Williams A and Douglas GR (2004) Comprehensive comparison of six microarray technologies. Nucleic Acids Res 32:e124PubMedGoogle Scholar
  134. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 102:4459–4464PubMedGoogle Scholar
  135. Zubenko GS, Maher B, Hughes HB III, Zubenko WN, Stiffler JS, Kaplan BB, Marazita ML (2003) Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 123:1–18PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Genes to Cognition ProgrammeWellcome Trust Sanger InstituteHinxton, CambridgeUK

Personalised recommendations