Behavior Genetics

, Volume 36, Issue 6, pp 858–868

Speech Sound Disorder Influenced by a Locus in 15q14 Region

  • Catherine M. Stein
  • Christopher Millard
  • Amy Kluge
  • Lara E. Miscimarra
  • Kevin C. Cartier
  • Lisa A. Freebairn
  • Amy J. Hansen
  • Lawrence D. Shriberg
  • H. Gerry Taylor
  • Barbara A. Lewis
  • Sudha K. Iyengar
Original paper


Despite a growing body of evidence indicating that speech sound disorder (SSD) has an underlying genetic etiology, researchers have not yet identified specific genes predisposing to this condition. The speech and language deficits associated with SSD are shared with several other disorders, including dyslexia, autism, Prader-Willi Syndrome (PWS), and Angelman’s Syndrome (AS), raising the possibility of gene sharing. Furthermore, we previously demonstrated that dyslexia and SSD share genetic susceptibility loci. The present study assesses the hypothesis that SSD also shares susceptibility loci with autism and PWS. To test this hypothesis, we examined linkage between SSD phenotypes and microsatellite markers on the chromosome 15q14–21 region, which has been associated with autism, PWS/AS, and dyslexia. Using SSD as the phenotype, we replicated linkage to the 15q14 region (P = 0.004). Further modeling revealed that this locus influenced oral-motor function, articulation and phonological memory, and that linkage at D15S118 was potentially influenced by a parent-of-origin effect (LOD score increase from 0.97 to 2.17, P = 0.0633). These results suggest shared genetic determinants in this chromosomal region for SSD, autism, and PWS/AS.


Phonology Speech Language Parent-of-origin Allele-sharing 


  1. Alarcón M, Cantor RM, Liu J, Gilliam TC, the Autism Genetic Resource Exchange Consortium, Geschwind DH (2002) Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet 70:60–71Google Scholar
  2. Alvares RL, Downing SF (1998) A survey of expressive communication skills in children with Angelman syndrome. Am J Speech–Lang Pathol 7:14–24Google Scholar
  3. Ashley-Koch A, Wolpert CM, Menold MM, Zaeem L, Basu S, Donnelly SL, Ravan SA, Powell CM, Qumsiyeh MB, Aylsworth AS, Vance JM, Gilbert JR, Wright HH, Abramson RK, DeLong GR, Cuccaro ML, Pericak-Vance MA (1999) Genetic studies of autistic disorder and chromosome 7. Genomics 61:227–236PubMedCrossRefGoogle Scholar
  4. Badner JA, Gershon ES (2002) Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7. Mol Psychiatry 7:56–66PubMedCrossRefGoogle Scholar
  5. Barrett S, Beck JC, Bernier R, Bisson E, Braun TA, Casavant TL, Childress D, Folstein SE, Garcia M, Gardiner MB, Gilman S, Haines JL, Hopkins K, Landa R, Meyer NH, Mullane JA, Nishimura DY, Palmer P, Piven J, Purdy J, Santangelo SL, Searby C, Sheffield V, Singleton J, Slager S, Struchen T, Svenson S, Vieland V, Wang K, Winklosky B (1999) An autosomal genomic screen for autism. Collaborative linkage study of autism. Am J Med Genet 88:609–615PubMedCrossRefGoogle Scholar
  6. Bartlett CW, Flax JF, Li W, Vieland VJ, Basett AS, Tallal P, Brzustowicz LM (2002) A major susceptibility locus for specific language impairment is located on chromosome 13q21. Am J Hum Genet 71:45–55PubMedCrossRefGoogle Scholar
  7. Bellini G, Bravaccio C, Calamoneri F, Donatella CM, Fiorillo P, Gagliano A, Mazzone D, del Giudice EM, Scuccimarra G, Militerni R, Pascotto A (2005) No evidence for association between dyslexia and DYX1C1 functional variants in a group of children and adolescents from Southern Italy. J Mol Neurosci 27:311–314PubMedCrossRefGoogle Scholar
  8. Bisgaard ML, Eiberg H, Møller N, Niebuhr E, Mohr J (1987) Dyslexia and chromosome 15 heteromorphism: negative lod score in a Danish material. Clin Genet 32:118–119PubMedCrossRefGoogle Scholar
  9. Bishop D (2001) Genetic influences on language impairment and literacy problems in children: same or different? J Child Psychol Psychiatry 42:189–198PubMedCrossRefGoogle Scholar
  10. Boyar FZ, Whitney MM, Lossie AC, Gray BA, Keller KL, Stalker HJ, Zori RT, Geffken G, Mutch J, Edge PJ, Voeller KS, Williams CA, Driscoll DJ (2001) A family with a grand-maternally derived interstitial duplication of proximal 15q. Clin Genet 60:421–430PubMedCrossRefGoogle Scholar
  11. Bradford Y, Haines J, Hutcheson H, Gardiner M, Braun T, Sheffield V, Casavant TL, Huang W, Wang K, Vieland V, Folstein SE, Santangelo SL, Piven J (2001) Incorporating language phenotypes strengthens evidence of linkage to autism. Am J Med Genet 105:539–547PubMedCrossRefGoogle Scholar
  12. Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T (2004) Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 113:565–573PubMedCrossRefGoogle Scholar
  13. Cardon L, Smith S, Fulker D, Kimberling W, Pennington B, DeFries J (1994) Quantitative trait locus for reading disability on chromosome 6. Science 266:276–279PubMedCrossRefGoogle Scholar
  14. Cassidy SB, Forsythe M, Heeger S, Nicholls RD, Schork N, Benn P, Schwartz S (1997) Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet 68:433–440PubMedCrossRefGoogle Scholar
  15. Chapman NH, Igo RP, Thomson JB, Matsushita M, Brkanac Z, Holzman T, Berninger VW, Wijsman EM, Raskind WH (2004) Linkage analysis of four regions previously implicated in dyslexia: confirmation of a locus on chromosome 15q. Am J Med Genet 131B:67–75CrossRefGoogle Scholar
  16. Cordell H (2001) Sample size requirements to control for stochastic variation in magnitude and location of allele-sharing linkage statistics in affected sibling pairs. Ann Hum Genet 65:491–502PubMedCrossRefGoogle Scholar
  17. Curran S, Roberts S, Thomas S, Veltman M, Browne J, Medda E, Pickles A, Sham P, Bolston PF (2005) An association analysis of microsatellite markers across the Prader-Willi/Angelman critical region on chromosome 15 (q11–13) and autism spectrum disorder. Am J Med Genet 137B:25–38CrossRefGoogle Scholar
  18. Dykens EM, Sutcliffe JS, Levitt P (2004) Autism and 15q11–q13 disorders: behavioral, genetic, and pathophysiological issues. Ment Retard Dev Disabil Res Rev 10:284–291PubMedCrossRefGoogle Scholar
  19. Elston R, Buxbaum S, Jacobs K, Olson J (2000) Haseman and Elston revisited. Genet Epidemiol 19:1–17PubMedCrossRefGoogle Scholar
  20. Epstein MP, Duren WL, Boehnke M (2000) Improved inference of relationship for pairs of individuals. Am J Hum Genet 67:1219–1231PubMedGoogle Scholar
  21. Fisher SE, DeFries JC (2002) Developmental dyslexia: genetic dissection of a complex cognitive trait. Nat Rev Neurosci 3:767–780PubMedCrossRefGoogle Scholar
  22. Fisher S, Francks C, Marlow A, MacPhie I, Newbury D, Cardon L, Ishikawa-Brush Y, Richardson A, Talcott J, Gayan J, Olson R, Pennington B, Smith S, DeFries J, Stein J, Monaco A (2002) Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nat Genet 30:86–91PubMedCrossRefGoogle Scholar
  23. Flax JF, Realpe-Bonilla T, Hirsch LS, Brzustowicz LM, Bartlett CW, Tallal P (2003) Specific language impairment in families: evidence for co-occurence with reading impairments. J Speech Lang Hearing Res 46:530–543CrossRefGoogle Scholar
  24. Fletcher D (1977) The Fletcher Time-by-count test of diadochokinetic syllable rate. C.C. Publications, Inc., Tigard, ORGoogle Scholar
  25. Goddard KAB, Witte JS, Suarez BK, Catalona WJ, Olson JM (2001) Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. Am J Hum Genet 68:1197–1206PubMedCrossRefGoogle Scholar
  26. Grigorenko E (2005) A conservative meta-analysis of linkage and linkage-association studies of developmental dyslexia. Sci Stud Read 9:285–316CrossRefGoogle Scholar
  27. Grigorenko E, Wood F, Meyer M, Hart L, Speed W, Shuster A, Pauls D (1997) Susceptibility loci for distinct components of developmental dyslexia on chromosome 6 and 15. Am J Hum Genet 60:27–39PubMedGoogle Scholar
  28. Haseman J, Elston R (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19PubMedCrossRefGoogle Scholar
  29. Hollingshead AB (1975) Four factor index of social class. Department of Sociology, Yale University, New Haven, CT.Google Scholar
  30. IMGSAC (1998) A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Hum Mol Genet 7:571–8CrossRefGoogle Scholar
  31. IMGSAC (2001) Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum Mol Genet 10:973–982CrossRefGoogle Scholar
  32. Kong X, Murphy K, Raj T, He C, White PS, Matise TC (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75:1143–1148PubMedCrossRefGoogle Scholar
  33. Lewis B, Freebairn L, Heeger S, Cassidy SB (2002) Speech and language skills of individuals with Prader-Willi syndrome. Am J Speech-Lang Pathol 11:285–294CrossRefGoogle Scholar
  34. Lewis B, Freebairn L, Taylor G (2000) Academic outcomes in children with histories of speech sound disorders. J Commun Disord 33:11–30PubMedCrossRefGoogle Scholar
  35. Li H, Yamagata T, Mori M, Momoi MY (2005) Absence of causative mutations and presence of autism-related allele in FOXP2 in Japanese autistic patients. Brain Dev 27:207–210PubMedCrossRefGoogle Scholar
  36. MacDermot KD, Bonora E, Sykes N, Couple A-M, Lai CSL, Vernes SC, Vargha-Khadem F, McKenzie F, Smith RL, Monaco AP, Fisher SE (2005) Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am J Hum Genet 76:1074–1080PubMedCrossRefGoogle Scholar
  37. Maestrini E, Paul A, Monaco AP, Bailey A (2000) Identifying autism susceptibility genes. Neuron 28:19–24PubMedCrossRefGoogle Scholar
  38. Marino C, Giorda R, Lorusso ML, Vanzin L, Salandi N, Nobile M, Citterio A, Beri S, Crespi V, Battaglia M, Molteni M (2005) A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. Eur J Hum Genet 13:491–499PubMedCrossRefGoogle Scholar
  39. Marino C, Giorda R, Vanzin L, Nobile M, Lorusso ML, Baschirotto C, Riva L, Molteni M, Battaglia M (2004) A locus on 15q15–15qter influences dyslexia: further support from a transmission/disequilibrium study in an Italian speaking population. J Med Genet 41:42–46PubMedCrossRefGoogle Scholar
  40. Moncla A, Malzac P, Voelckel M-A, Auquier P, Girardot L, Mattei M-G, Philip N, Mattei J-F, Lalande M, Livet M-O (1999) Phenotype–genotype correlation in 20 deletion and 20 non-deletion Angelman syndrome patients. Eur J Hum Genet 7:131–139PubMedCrossRefGoogle Scholar
  41. Morris DW, Robinson L, Turic D, Duke M, Webb V, Milham C, Hopkin E, Pound K, Fernando S, Easton M, Hamshere M, Williams N, McGuffin P, Stevenson J, Krawczak M, Owen MJ, O’Donovan MC, Williams J (2000) Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q. Hum Mol Genet 9:843–848PubMedCrossRefGoogle Scholar
  42. Muhle R, Trentacoste SV, Rapin I (2004) The genetics of autism. Pediatrics 113:e472–e486PubMedCrossRefGoogle Scholar
  43. Nöthen MM, Schulte-Körne G, Grimm T, Cichon S, Vogt IR, Müller-Myhsok B, Propping P, Remschmidt H (1999) Genetic linkage analysis with dyslexia: evidence for linkage of spelling disability to chromosome 15. Eur Child Adolesc Psych 8:III/56-III/59Google Scholar
  44. Nurmi EL, Dowd M, Tadevosyan-Leyfer O, Haines JL, Folstein SE, Sutcliffe JS (2003) Exploratory subsetting of autism families based on savant skills improves evidence of genetic linkage to 15q11–q13. J Am Acad Adolesc Psychiatry 42:856–863CrossRefGoogle Scholar
  45. Olson JM (1999) A general conditional-logistic model for affected-relative-pair linkage studies. Am J Hum Genet 65:1760–1769PubMedCrossRefGoogle Scholar
  46. Pennington BF (1997) Using genetics to dissect cognition. Am J Hum Genet 60:13–16PubMedGoogle Scholar
  47. Philippe A, Martinez M, Guilloud-Bataille M, Gillberg C, Rastam M, Sponheim E, Coleman M, Zappella M, Aschauer H, Van Maldergem L, Penet C, Feingold J, Brice A, Leboye, M (1999) Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Hum Mol Genet 8 (5):805–812PubMedCrossRefGoogle Scholar
  48. Rabin M, Wen XL, Hepburn M, Lubs HA, Feldman E, Duara R (1993) Suggestive linkage of developmental dyslexia to chromosome 1p34–p36. Lancet 342:178PubMedCrossRefGoogle Scholar
  49. Raitano N, Pennington B, Tunick R, Boada R, Shriberg LD (2004) Pre-literacy skills of subgroups of children with speech sound disorders. J Child Psychol Psychiatry 45:821–835PubMedCrossRefGoogle Scholar
  50. Robbins J, Klee T (1987). Clinical assessment of oropharyngeal motor development in young children. J Speech Hearing Disord 52:271–277PubMedGoogle Scholar
  51. Roof E, Stone W, MacLean W, Feurer ID, Thompson T, Butler MG (2000) Intellectual characteristics of Prader-Willi syndrome: comparison of genetic subtypes. J Intellect Disab Res 44:25–30CrossRefGoogle Scholar
  52. Scerri TS, Fisher SE, Francks C, MacPhie IL, Paracchini S, Richardson AJ, Stein JF, Monaco AP (2004) Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. J Med Genet 41:853–857PubMedCrossRefGoogle Scholar
  53. Schulte-Körne G, Grimm T, Nöthen MM, Müller-Myhsok B, Cichon S, Vogt IR, Propping P, Remschmidt H (1998) Evidence for linkage of spelling disability to chromosome 15. Am J Hum Genet 63:279–282PubMedCrossRefGoogle Scholar
  54. Shaywitz SE, Shaywitz BA, Flether JM, Escobar MD (1990) Prevalence of reading disability in boys and girls: results of the Connecticut study. JAMA 264:998–1002PubMedCrossRefGoogle Scholar
  55. Shete S, Jacobs KB, Elston RC (2003) Adding further power to the Haseman and Elston method for detecting linkage in larger sibships: weighting sums and differences. Hum Hered 55:79–85PubMedCrossRefGoogle Scholar
  56. Shriberg LD, Austin D (1998) Comorbidity of speech-language disorder: Implications for a phenotype marker for speech delay. In: Paul R (ed) Exploring the speech/language connection. Brookes, Baltimore, pp 73–118Google Scholar
  57. Shriberg LD, Paul R, McSweeny J, Klin A, Volkmar FR, Cohen DJ (2001) Speech and prosody characteristics of adolescents and adults with high functioning autism and Asperger syndrome. J Speech Lang Hearing Res 44:1097–1115CrossRefGoogle Scholar
  58. Shriberg L, Tomblin J, McSweeny J (1999) Prevalence of speech delay in 6-year-old children and comorbidity with language impairment. J Speech Lang Hearing Res 42:1461–1481Google Scholar
  59. Smith SD, Kimberling W, Pennington BF, Lubs HA (1983) Specific reading disability: Identification of an inherited form through linkage analysis. Science 219:276–279Google Scholar
  60. Smith SD, Pennington BF, Boada R, Shriberg LD (2005) Linkage of speech sound disorder to reading disability loci. J Child Psychol Psychiatry 46:1057–1066PubMedCrossRefGoogle Scholar
  61. SLI Consortium (2002) A genomewide scan identifies two novel loci invovled in specific language impairment. Am J Hum Genet 70:384–398CrossRefGoogle Scholar
  62. SLI Consortium (2004) Highly significant linkage to the SLI1 locus in an expanded sample of individuals affected by specific language impairment. Am J Hum Genet 74:1225–1238CrossRefGoogle Scholar
  63. Stein CM, Schick JH, Taylor HG, Shriberg LD, Millard C, Kundtz-Kluge A, Russo K, Minich N, Hansen A, Freebairn LA, Elston RC, Lewis BA, Iyengar SK (2004) Pleiotropic effects of a chromosome 3 locus on speech-sound disorder and reading. Am J Hum Genet 74:283–297PubMedCrossRefGoogle Scholar
  64. Taipale M, Kaminen N, Nopola-Hemmi J, Haltia T, Myllyluoma B, Lyytinen H, Muller K, Kaaranen M, Lindsburg PJ, Hannula-Jouppi K, Kere J (2003) A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in the brain. Proc Natl Acad Sci 100:11553–11558PubMedCrossRefGoogle Scholar
  65. Tomblin J, Records N, Buckwalter P, Zhang X, Smith E, O’Brien M (1997) Prevalence of specific language impairment in kindergarten chilrden. J Speech Hearing Res 40:1245–1260Google Scholar
  66. Wassink TH, Brzustowicz LM, Bartlett CW, Szatmari P (2004) The search for autism disease genes. Ment Retard Dev Disabil Res Rev 10:272–283PubMedCrossRefGoogle Scholar
  67. Whittemore AS, Tu I-P (1998) Simple, robust linkage tests for affected sibs. Am J Hum Genet 62:1228–1242PubMedCrossRefGoogle Scholar
  68. Wigg KB, Couto JM, Feng Y, Anderson B, Cate-Carter TD, Macciardi F, Tannock R, Lovett MW, Humphries TW, Barr CL (2004) Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Mol Psychiatry 9:1111–1121PubMedCrossRefGoogle Scholar
  69. Ylisaukko-oja T, Peyrard-Janvid M, Lindgren CM, Rehnström K, Vanhala R, Peltonen L, Järvelä I, Kere J (2004) Family-based association study of DYX1C1 variants in autism. Eur J Hum Genet 13:127–130CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Catherine M. Stein
    • 1
  • Christopher Millard
    • 1
  • Amy Kluge
    • 1
  • Lara E. Miscimarra
    • 1
  • Kevin C. Cartier
    • 1
  • Lisa A. Freebairn
    • 2
  • Amy J. Hansen
    • 2
  • Lawrence D. Shriberg
    • 3
  • H. Gerry Taylor
    • 2
  • Barbara A. Lewis
    • 2
  • Sudha K. Iyengar
    • 1
  1. 1.Department of Epidemiology and BiostatisticsCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Pediatrics, Rainbow Babies & Childrens HospitalCase Western Reserve UniversityClevelandUSA
  3. 3.Waisman CenterUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations