Behavior Genetics

, Volume 36, Issue 5, pp 687–696 | Cite as

Frequentist Model-averaged Estimators and Tests for Univariate Twin Models

Article

Abstract

Parameter estimates from analyses of univariate twin data usually do not reflect the uncertainty due to the model selection phase of the data analysis. To address the effect of model selection uncertainty on parameter estimates, we introduce frequentist model-averaged estimators for univariate twin data analysis that use information-theoretic criteria to assign model weights. We conduct simulation studies to examine the performance of model-averaged estimators of additive genetic variance, and for tests for additive genetic variance based on model-averaged estimators. In simulation studies with small or moderate sample sizes, model-averaged estimators of additive genetic variance typically have lower mean-squared error than either (i) estimators from individual twin models, or (ii) estimators obtained from a decision procedure where the best-fitting model from likelihood-ratio testing is used to estimate additive genetic variance. For each sample size simulated, bootstrap tests based on model-averaged estimators have higher power to detect additive genetic variance than currently-used tests in most cases.

Keywords

Additive genetic variance information-theoretic criteria AIC BIC 

References

  1. Adams, J. L. (1990). A computer experiment to evaluate regression strategies. In Proceedings of the Statistical Computing section of the American Statistical Association, pp. 55–62Google Scholar
  2. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki, (eds.), Proceedings of the Second International Symposium on Information Theory, pp. 267–281Google Scholar
  3. Aptech Systems Inc. (1993). GAUSS. Maple Valley, WA: Aptech Systems Inc. URL http://www.aptech.comGoogle Scholar
  4. Burnham K. P., Anderson D. R. (1998). Model selection and inference: A practical information-theoretic approach. Springer, New YorkGoogle Scholar
  5. Christian J. C., Kang K. W., Norton J. J., Jr. (1974). Choice of an estimate of genetic variance from twin data. Am. J. Human Genet. 26: 154–161Google Scholar
  6. Christian J. C., Norton J. A., Jr., Sorbel J., Williams C. J. (1995). Comparison of analysis of variance and maximum likelihood based path analysis of twin data: Partitioning genetic and environmental sources of covariance. Genet. Epidemiol. 12: 27–35CrossRefPubMedGoogle Scholar
  7. Copas J., Eguchi S. (2005). Local model uncertainty and incomplete-data bias. J. Royal Stat. Soc. B 67: 459–514CrossRefGoogle Scholar
  8. Draper D. (1995). Assessment and propagation of model uncertainty. J. Royal Stat. Soc. B 57: 45–98Google Scholar
  9. Efron B., Tibshirani R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, New YorkGoogle Scholar
  10. Hjort N.L., Claeskens G. (2003). Frequentist model average estimators. J. Am. Stat. Assoc. 98: 879–899CrossRefGoogle Scholar
  11. Hoeting J. A., Madigan D., Raftery A. E., Volinsky C. T. (1999). Bayesian model averaging: A tutorial. Stat. Sci. 14: 382–417CrossRefGoogle Scholar
  12. Keller M. C., Coventry W. L. (2005). Quantifying and addressing parameter indeterminacy in the classical twin design. Twin Res. Human Genet. 8: 201–213CrossRefGoogle Scholar
  13. Markon K. E., Krueger R. F. (2004). An empirical comparison of information-theoretic selection criteria for multivariate behavior genetic models. Behav. Genet. 34: 593–610CrossRefPubMedGoogle Scholar
  14. Neale, M. C. and Cardon, L. R. (1992). Methodology for genetic studies of twins and families, chapter 8. Dordrecht: KluwerGoogle Scholar
  15. Neale M. C., Miller M. B. (1997). The use of likelihood-based confidence intervals in genetic models. Behav. Genet. 27: 113–120CrossRefPubMedGoogle Scholar
  16. Oehlert, G. W. (2000). A first course in design and analysis of experiments, chapter 11. FreemanGoogle Scholar
  17. R Development Core Team. (2003). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL http://www.R-project.org. ISBN 3-900051-00-3Google Scholar
  18. Raftery A. E. (1996). Approximate bayes factors and accounting for model uncertainty in generalised linear models. Biometrika 83: 251–266CrossRefGoogle Scholar
  19. Raftery A. E., Madigan D., Hoeting J. A. (1997). Bayesian model averaging for regression models. J. Am. Stat. Assoc. 92: 179–191CrossRefGoogle Scholar
  20. SAS Institute Inc. (2004). SAS 9.1.3 Language Reference: Concepts. Cary, NC: SAS Institute Inc. URL http://www.sas.comGoogle Scholar
  21. Schwarz G. (1978). Estimating the dimension of a model. Ann. Stat. 6(2): 461–464CrossRefGoogle Scholar
  22. Self S. G., Liang K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82: 605–610CrossRefGoogle Scholar
  23. Sullivan P. F., Eaves L. J. (2002). Evaluation of analyses of univariate discrete twin data. Behav. Genet. 32: 221–227CrossRefPubMedGoogle Scholar
  24. Volinsky C. T., Madigan D., Raftery A. E., Kronmal R. A. (1997). Bayesian model averaging in proportional hazard models: assessing the risk of a stroke. J. Royal Stat. Soc. Ser. C 46: 433–448CrossRefGoogle Scholar
  25. Wijesiri U. W. L., Williams C. J. (1995). Approximate solutions for the maximum likelihood estimates in models of human twin data. Behav. Genet. 25: 211–216CrossRefPubMedGoogle Scholar
  26. Williams C. J. (1993). On the covariance between parameter estimates in models of twin data. Biometrics 49: 557–568PubMedCrossRefGoogle Scholar
  27. Zhang, H. (1996). Effects of model selection strategy on variance component estimators for human twin data. Master’s Thesis, University of Idaho, USAGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of IdahoMoscowUSA
  2. 2.Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of StatisticsUniversity of IdahoMoscowUSA

Personalised recommendations