Behavior Genetics

, Volume 36, Issue 3, pp 405–415 | Cite as

Neuroanatomy of Down Syndrome in vivo: A Model of Preclinical Alzheimer’s Disease

Article

Aging in Down syndrome (DS) is accompanied by neuropathological features of Alzheimer’s disease (AD). Therefore, DS has been proposed as a model to study predementia stages of AD. MRI-based measurement of grey matter atrophy is an in vivo surrogate marker of regional neuronal density. A range of neuroimaging studies have described the macroscopic neuroanatomy of DS. Recent studies using sensitive quantitative measures of region-specific atrophy based on high-resolution MRI suggest that age-related atrophy in DS resembles the pattern of brain atrophy in early stages of AD. The pattern of atrophy determined in predementia DS supports the notion that AD-type pathology leads to neuronal degeneration not only in allocortical, but also in neocortical brain areas before onset of clinical dementia. This has major implications for our understanding of the onset and progression of AD-type pathology both in DS and in sporadic AD.

Key words

 Alzheimer's disease  atrophy  cerebral cortex  down syndrome  morphometry  MRI 

Notes

Acknowledgments

We thank Dr. Michael Ewers (LMU Munich) for critical reading of the manuscript. Part of this work was supported by grants of the Medical Faculty of the Ludwig–Maximilian University (Munich, Germany) to S.J.T., of the Hirnliga e. V. (Nürmbrecht, Germany) to S.J.T. and H.H., and by the German Competency Network on Dementias (Kompetenznetz Demenzen) funded by the Bundesministerium für Bildung und Forschung (BMBF), Germany.

References

  1. Alexander G. E., Saunders A. M., Szczepanik J., Strassburger T. L., Pietrini P., Dani A., et al. (1997). Relation of age and apolipoprotein E to cognitive function in Down syndrome adults. Neuroreport 8:1835–1840PubMedGoogle Scholar
  2. Ashburner J. and Friston K. J. (2000). Voxel-based morphometry–the methods. Neuroimage. 11:805–821CrossRefPubMedGoogle Scholar
  3. Aylward E. H., Li Q., Honeycutt N. A., Warren A. C., Pulsifer M. B., Barta P. E., et al. (1999). MRI volumes of the hippocampus and amygdala in adults with Down’s syndrome with and without dementia. Am. J. Psychiatry. 156:564–568PubMedGoogle Scholar
  4. Becker L., Mito T., Takashima S. and Onodera K. (1991a). Growth and development of the brain in Down syndrome. In: Epstein C., (eds) The Morphogenesis of Down Syndrome. New York, Wiley-Liss, pp. 133–152Google Scholar
  5. Becker L., Mito T., Takashima S. and Onodera K. (1991b). Growth and development of the brain in Down syndrome. Prog. Clin. Biol. Res. 373:133–152Google Scholar
  6. Benson D. F. (1988). Classical syndromes of aphasia. In: Foller F., Grafman J., (eds) Handbook of Neuropsychology. Amsterdam, ElsevierGoogle Scholar
  7. Bobinski M., de Leon M. J., Wegiel J., Desanti S., Convit A., Saint Louis L. A., et al. (2000). The histological validation of post mortem magnetic resonance imaging- determined hippocampal volume in Alzheimer’s disease. Neuroscience 95:721–725CrossRefPubMedGoogle Scholar
  8. Bokde A. L., Teipel S. J., Zebuhr Y., Leinsinger G., Gootjes L., Schwarz R., et al. (2002). A new rapid landmark-based regional MRI segmentation method of the brain. J. Neurol. Sci. 194:35–40CrossRefPubMedGoogle Scholar
  9. Bookstein F. L. (2001). “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage. 14:1454–1462CrossRefPubMedGoogle Scholar
  10. Braak H., Griffing K. and Braak E. (1997). Neuroanatomy of Alzheimer’s disease. Alzheimer’s Research 3:235–247Google Scholar
  11. Cabeza R. and Nyberg L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12:1–47CrossRefPubMedGoogle Scholar
  12. Chetelat G. and Baron J. C. (2003). Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 18:525–541CrossRefPubMedGoogle Scholar
  13. Corbetta M., Shulman G. L., Miezin F. M. and Petersen S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 270:802–805PubMedADSGoogle Scholar
  14. Coyle J. T., Oster-Granite M. L. and Gearhart J. D. (1986). The neurobiologic consequences of Down syndrome. Brain Res. Bull. 16:773–787CrossRefPubMedGoogle Scholar
  15. De La Torre R., Casado A., Lopez-Fernandez E., Carrascosa D., Ramirez V. and Saez J. (1996). Overexpression of copper-zinc superoxide dismutase in trisomy 21. Experientia 52:871–873CrossRefPubMedGoogle Scholar
  16. De Lacoste M. C., Kirkpatrick J. B. and Ross E. D. (1985). Topography of the human corpus callosum. J. Neuropath. Exper. Neurol. 44:578–591Google Scholar
  17. Engidawork E. and Lubec G. (2001). Protein expression in Down syndrome brain. Amino Acids 21:331–361CrossRefPubMedGoogle Scholar
  18. Evenhuis H. M. (1990). The natural history of dementia in Down’s syndrome. Arch. Neurol. 47:263–267PubMedGoogle Scholar
  19. Fox N. C., Crum W. R., Scahill R. I., Stevens J. M., Janssen J. C. and Rossor M. N. (2001). Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358:201–205CrossRefPubMedGoogle Scholar
  20. Frangou S., Aylward E., Warren A., Sharma T., Barta P. and Pearlson G. (1997). Small planum temporale volume in Down’s syndrome: a volumetric MRI study. Am. J. Psychiatry. 154:1424–1429PubMedGoogle Scholar
  21. Frisoni G. B., Scheltens P., Galluzzi S., Nobili F. M., Fox N. C., Robert P. H., et al. (2003). Neuroimaging tools to rate regional atrophy, subcortical cerebrovascular disease, and regional cerebral blood flow and metabolism: consensus paper of the EADC. J. Neurol. Neurosurg. Psychiat. 74:1371–1381CrossRefPubMedGoogle Scholar
  22. Good C. D., Johnsrude I. S., Ashburner J., Henson R. N., Friston K. J. and Frackowiak R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36CrossRefPubMedGoogle Scholar
  23. Greicius M. D., Krasnow B., Boyett-Anderson J. M., Eliez S., Schatzberg A. F., Reiss A. L., et al. (2003). Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus 13:164–174CrossRefPubMedGoogle Scholar
  24. Hampel H., Teipel S. J., Alexander G. E., Horwitz B., Teichberg D., Schapiro M. B., et al. (1998). Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch. Neurol. 55:193–198CrossRefPubMedGoogle Scholar
  25. Hampel H., Teipel S. J., Alexander G. E., Pogarell O., Rapoport S. I. and Moller H. J. (2002a). In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease Perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J. Neural. Transm. 109:837–855CrossRefGoogle Scholar
  26. Hampel H., Teipel S. J., Bayer W., Alexander G. E., Schwarz R., Schapiro M. B., et al. (2002b). Age transformation of combined hippocampus and amygdala volume improves diagnostic accuracy in Alzheimer’s disease. J. Neurol. Sci. 194:15–19CrossRefGoogle Scholar
  27. Hof P. R., Bouras C., Perl D. P., Sparks D. L., Mehta N. and Morrison J. H. (1995). Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch. Neurol. 52:379–391PubMedGoogle Scholar
  28. Hyman B. T., West H. L., Rebeck G. W., Lai F. and Mann D. M. (1995). Neuropathological changes in Down’s syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. Arch. Neurol. 52:373–378PubMedGoogle Scholar
  29. Ikeda M. and Arai Y. (2002). Longitudinal changes in brain CT scans and development of dementia in Down’s syndrome. Eur. Neurol. 47:205–208CrossRefPubMedGoogle Scholar
  30. Ikeda S., Yanagisawa N., Allsop D. and Glenner G. G. (1989). Evidence of amyloid beta-protein immunoreactive early plaque lesions in Down’s syndrome brains. Lab. Invest. 61:133–137PubMedGoogle Scholar
  31. Innocenti G. M. (1986). General organization of callosal connections in the cerebral cortex. In: Jones E. G., Peters A., (eds) Cerebral Cortex: Sensory Motor Areas and Aspects of Cortical Connectivity. New York NY, Plenum Publishing Corp., pp. 291–353Google Scholar
  32. Jack C. R., Jr., Dickson D. W., Parisi J. E., Xu Y. C., Cha R. H., O’Brien P. C., et al. (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58:750–757PubMedGoogle Scholar
  33. Janowsky J. S., Kaye J. A. and Carper R. A. (1996). Atrophy of the corpus callosum in Alzheimer’s disease versus healthy aging. J. Am. Ger. Soc. 44:798–803Google Scholar
  34. Jellinger K. A. and Bancher C. (1998). Neuropathology of Alzheimer’s disease: a critical update. J Neural. Transm. Suppl. 54:77–95PubMedGoogle Scholar
  35. Jernigan T. L., Bellugi U., Sowell E., Doherty S. and Hesselink J. R. (1993). Cerebral morphologic distinctions between Williams and Down syndromes. Arch. Neurol. 50:186–191PubMedGoogle Scholar
  36. Karas G. B., Scheltens P., Rombouts S. A., Visser P. J., van Schijndel R. A., Fox N. C., et al. (2004). Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 23:708–716CrossRefPubMedGoogle Scholar
  37. Kesslak J. P., Nagata S. F., Lott I. and Nalcioglu O. (1994). Magnetic resonance imaging analysis of age-related changes in the brains of individuals with Down’s syndrome. Neurology 44:1039–1045PubMedGoogle Scholar
  38. Krasuski J.S., Alexander G.E., Horwitz B., Rapoport S.I. and Schapiro M.B. (2002). Relation of medial temporal lobe volumes to age and memory function in nondemented adults with Down’s syndrome: implications for the prodromal phase of Alzheimer’s disease. Am. J. Psychiatry 159:74–81CrossRefPubMedGoogle Scholar
  39. Lawlor B. A., McCarron M., Wilson G. and McLoughlin M. (2001). Temporal lobe-oriented CT scanning and dementia in Down’s syndrome. Int. J. Geriatr. Psychiatry 16:427–429PubMedGoogle Scholar
  40. Lawlor B. A., McCarron M., Wilson G. and McLoughlin M. (2001). Temporal lobe-oriented CT scanning and dementia in Down’s syndrome. Int. J. Geriatr. Psychiatry 16:427–429CrossRefPubMedGoogle Scholar
  41. Lee A. C., Robbins T. W. and Owen A. M. (2000). Episodic memory meets working memory in the frontal lobe: functional neuroimaging studies of encoding and retrieval. Crit. Rev. Neurobiol. 14:165–197PubMedGoogle Scholar
  42. Mann D. M. (1988). The pathological association between Down syndrome and Alzheimer disease. Mech. Ageing Dev. 43:99–136CrossRefPubMedGoogle Scholar
  43. Mann D. M. and Esiri M. M. (1989). The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J. Neurol. Sci. 89:169–179CrossRefPubMedGoogle Scholar
  44. Mann D. M., Prinja D., Davies C. A., Ihara Y., Delacourte A., Defossez A., et al. (1989). Immunocytochemical profile of neurofibrillary tangles in Down’s syndrome patients of different ages. J. Neurol. Sci. 92:247–260CrossRefPubMedGoogle Scholar
  45. Mann D. M. A., Yates P. O. and Marcyniuk B. (1984). Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropath. Appl. Neurobiol. 10:185–207Google Scholar
  46. Mesulam M. (2004). The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn. Mem. 11:43–49CrossRefPubMedGoogle Scholar
  47. Morrison J. H., Scherr S., Lewis D. A., Campbell M. J. and Bloom F. E. (1986). The laminar and regional distribution of neocortical somatostatin and neuritic plaques: implications for Alzheimer’s disease as a global neocortical disconnection syndrome. In: Scheibel A. B., Weschler A. F., (eds) The Biological Substrates of Alzheimer’s Disease. New York, NY, Academic Press, pp. 115–131Google Scholar
  48. Nagy Z., Hindley N. J., Braak H., Braak E., Yilmazer-Hanke D. M., Schultz C., et al. (1999). The progression of Alzheimer’s disease from limbic regions to the neocortex: clinical, radiological and pathological relationships. Dement. Geriatr. Cogn. Disord. 10:115–120CrossRefPubMedGoogle Scholar
  49. Nagy Z., Jobst K. A., Esiri M. M., Morris J. H., King E. M.-F., MacDonald B., et al. (1996). Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer’s disease: clinicopathological correlations using three sets of pathologic diagnostic criteria. Dementia 7:76–81PubMedGoogle Scholar
  50. Pearlson G. D., Breiter S. N., Aylward E. H., Warren A. C., Grygorcewicz M., Frangou S., et al. (1998). MRI brain changes in subjects with Down syndrome with and without dementia. Dev. Med. Child Neurol. 40:326–334PubMedGoogle Scholar
  51. Pearson R. C. A., Esiri M. M., Hiorns R. W., Wilcock G. K. and Powell T. P. S. (1985). Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 82:4531–4534PubMedCrossRefADSGoogle Scholar
  52. Pennanen C., Testa C., Laakso M. P., Hallikainen M., Helkala E. L., Hanninen T., et al. (2005). A voxel based morphometry study on mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry. 76:11–14CrossRefPubMedGoogle Scholar
  53. Pinter J. D., Brown W. E., Eliez S., Schmitt J. E., Capone G. T. and Reiss A. L. (2001a). Amygdala and hippocampal volumes in children with Down syndrome: a high-resolution MRI study. Neurology 56:972–974Google Scholar
  54. Pinter J. D., Eliez S., Schmitt J. E., Capone G. T. and Reiss A. L. (2001b). Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am. J. Psychiatry 158:1659–1665CrossRefGoogle Scholar
  55. Raz N., Torres I. J., Briggs S. D., Spencer W. D., Thornton A. E., Loken W. J., et al. (1995). Selective neuroanatomic abnormalities in Down’s syndrome and their cognitive correlates: evidence from MRI morphometry. Neurology 45:356–366PubMedGoogle Scholar
  56. Rugg M. D., Otten L. J. and Henson R. N. (2002). The neural basis of episodic memory: evidence from functional neuroimaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357:1097–1110CrossRefPubMedGoogle Scholar
  57. Rumble B., Retallack R., Hilbich C., Simms G., Multhaup G., Martins R., et al. (1989). Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N. Engl. J. Med. 320:1446–1452PubMedCrossRefGoogle Scholar
  58. Sadowski M., Wisniewski H. M., Tarnawski M., Kozlowski P. B., Lach B. and Wegiel J. (1999). Entorhinal cortex of aged subjects with Down’s syndrome shows severe neuronal loss caused by neurofibrillary pathology. Acta Neuropathol. 97:156–164CrossRefPubMedGoogle Scholar
  59. Schapiro M. B., Haxby J. V. and Grady C. L. (1992). Nature of mental retardation and dementia in Down syndrome: study with PET, CT, and neuropsychology. Neurobiol. Aging 13:723–734CrossRefPubMedGoogle Scholar
  60. Schapiro M. B., Luxenberg J. S., Kaye J. A., Haxby J. V., Friedland R. P. and Rapoport S. I. (1989). Serial quantitative CT analysis of brain morphometrics in adult Down’s syndrome at different ages. Neurology 39:1349–1353PubMedGoogle Scholar
  61. Schmidt-Sidor B., Wisniewski K. E., Shepard T. H. and Sersen E. A. (1990). Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. Clin. Neuropathol. 9:181–190PubMedGoogle Scholar
  62. Smith A. D. (2002). Commentary: Imaging the progression of Alzheimer pathology through the brain. PNAS 99:4135–4137CrossRefPubMedADSGoogle Scholar
  63. Squire L.R. and Zola-Morgan S. (1991). The medial temporal lobe memory system. Science 253:1380–1386PubMedADSGoogle Scholar
  64. Talairach J. and Tournoux P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. New York, ThiemeGoogle Scholar
  65. Teipel S. J., Alexander G. E., Schapiro M. B., Moller H. J., Rapoport S. I. and Hampel H. (2004). Age-related cortical grey matter reductions in non-demented Down’s syndrome adults determined by MRI with voxel-based morphometry. Brain 127:811–824CrossRefPubMedGoogle Scholar
  66. Teipel S. J., Bayer W., Alexander G. E., Zebuhr Y., Teichberg D., Kulic L., et al. (2002a). Progression of corpus callosum atrophy in Alzheimer disease. Arch. Neurol. 59:243–248CrossRefGoogle Scholar
  67. Teipel S. J., Bayer W., Alexander G. E., Zebuhr Y., Teichberg D., Kulic L., et al. (2002b). Progression of Corpus Callosum Atrophy in Alzheimer’s disease. Arch. Neurol. 59:243–248CrossRefGoogle Scholar
  68. Teipel S. J., Flatz W. H., Heinsen H., Bokde A. L. W., Schoenberg S. O., Stöckel S., et al. (2005). Measurement of basal forebrain atrophy in AD using MRI. Brain 128:2626–2644CrossRefPubMedGoogle Scholar
  69. Teipel S. J., Hampel H., Alexander G. E., Schapiro M. B., Horwitz B., Teichberg D., et al. (1998). Dissociation between white matter pathology and corpus callosum atrophy in Alzheimer’s disease. Neurology 51:1381–1385PubMedGoogle Scholar
  70. Teipel S. J., Hampel H., Pietrini P., Alexander G. E., Horwitz B., Daley E., et al. (1999). Region specific corpus callosum atrophy correlates with regional pattern of cortical glucose metabolism in Alzheimer’s disease. Arch. Neurol. 56:467–473CrossRefPubMedGoogle Scholar
  71. Teipel S. J., Schapiro M. B., Alexander G. E., Krasuski J. S., Horwitz B., Hoehne C., et al. (2003). Relation of corpus callosum and hippocampal size to age in nondemented adults with Down’s syndrome. Am. J. Psychiatry 160:1870–1878CrossRefPubMedGoogle Scholar
  72. Vassar R. (2005). beta-Secretase, APP and Abeta in Alzheimer’s disease. Subcell. Biochem. 38:79–103PubMedCrossRefGoogle Scholar
  73. Wang P. P., Doherty S., Hesselink J. R. and Bellugi U. (1992). Callosal morphology concurs with neurobehavioral and neuropathological findings in two neurodevelopmental disorders. Arch. Neurol. 49:407–411PubMedGoogle Scholar
  74. Weis S., Jellinger K. and Wenger E. (1991a). Morphometry of the corpus callosum in normal aging and Alzheimer’s disease. J. Neural. Transm. 33[Suppl]: 35–38Google Scholar
  75. Weis S., Weber G., Neuhold A. and Rett A. (1991b). Down Syndrome: MR quantification of brain structures and comparison with normal control subjects. AJNR 12:1207–1211Google Scholar
  76. White N. S., Alkire M. T. and Haier R. J. (2003). A voxel-based morphometric study of nondemented adults with Down Syndrome. Neuroimage 20:393–403CrossRefPubMedGoogle Scholar
  77. Wisniewski K. E. (1990). Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. Am. J. Med. Genet. Suppl. 7:274–281CrossRefPubMedGoogle Scholar
  78. Wisniewski K. E., Dalton A. J., McLachlan C., Wen G. Y. and Wisniewski H. M. (1985a). Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35: 957–961Google Scholar
  79. Wisniewski K. E., Wisniewski H. M. and Wen G. Y. (1985b). Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17:278–282CrossRefGoogle Scholar
  80. Yamauchi H., Fukuyama H., Harada K., Nabatame H., Ogawa M., Ouchi Y., et al. (1993). Callosal atrophy parallels decreased cortical oxygen metabolism and neuropsychological impairment in Alzheimer’s disease. Arch. Neurol. 50:1070–1074PubMedGoogle Scholar
  81. Yoshimura N., Kubota S., Fukushima Y., Kudo H., Ishigaki H. and Yoshida Y. (1990). Down’s syndrome in middle age. Topographical distribution and immunoreactivity of brain lesions in an autopsied patient. Acta Pathol. Jpn. 40:735–743Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Alzheimer Memorial Center and Geriatric Psychiatry Branch, Dementia and Neuroimaging Section, Department of PsychiatryLudwig–Maximilian UniversityMunichGermany
  2. 2.Alzheimer Memorial Center and Geriatric Psychiatry Branch, Dementia and Neuroimaging Section, Department of PsychiatryLudwig–Maximilian UniversityMunichGermany

Personalised recommendations