Behavior Genetics

, 36:248 | Cite as

Identification of QTLs Influencing Alcohol Preference in the High Alcohol Preferring (HAP) and Low Alcohol Preferring (LAP) Mouse Lines

  • Paula J. Bice
  • Tatiana Foroud
  • Lucinda G. Carr
  • Lili Zhang
  • Lixiang Liu
  • Nicholas J. Grahame
  • Lawrence Lumeng
  • Ting-Kai Li
  • John K. Belknap


The High- and Low-Alcohol Preferring (HAP1/LAP1 and HAP2/LAP2) mouse lines were developed by selective breeding for differences in alcohol preference. They represent the only extant selectively bred mouse lines developed for this alcohol phenotype. Therefore, they provide a unique resource for QTL detection and mapping. Importantly, neither of the replicate lines is inbred and therefore, novel study designs can be employed to detect loci contributing to alcohol preference. Two independent studies, with very different approaches, were conducted in the HAP and LAP replicate lines. In Study 1, microsatellite markers were genotyped in the replicate HAP1/LAP1 and HAP2/LAP2 mice in QTL regions nominated by other mouse RI and F2 studies in order to detect divergence of allele frequencies in the two oppositely selected lines. Significant differences in allele frequencies were observed in the HAP1/LAP1 mice with markers on chromosome 9 (p<0.01). In the HAP2/LAP2 mice, significant differences in allele frequencies were identified on chromosomes 2 and 9 (p<0.01). In Study 2, a genome-wide screen was performed in a sample of 432 HAP1×LAP1 F2 animals and a QTL on chromosome 9 (LOD=5.04) was found which met criteria for genome wide significance (p<0.001). Gender specific analyses supported a greater effect of the QTL among female mice (LOD=5.19; p<0.0008) than male mice (LOD=1.19). This study provides additional evidence and confirmation that specific regions on chromosomes 9 and perhaps 2 are important for alcohol preference.


Alcohol preference HAP and LAP mice QTL selective breeding 


  1. Belknap J. K., Atkins A. L. (2001). The replicability of QTLs for murine alcohol preferences drinking behavior across eight independent studies. Mamm. Genome 12: 893–899PubMedCrossRefGoogle Scholar
  2. Belknap J. K., Crabbe J. C., Young E. R. (1993). Volunatary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology 112: 503–510PubMedCrossRefGoogle Scholar
  3. Belknap J. K., Richards S. P., O’Toole L. A., Helms M. L., Phillips T. J. (1997). Short-term selective breeding as a tool for QTL mapping: ethanol preference drinking in mice. Behav. Genet. 27: 55–66PubMedCrossRefGoogle Scholar
  4. Bice P. J., Foroud T., Bo R., Castelluccio P., Lumeng L., Li T.-K., Carr L. G. (1998). Genomic screen or QTLs underlying alcohol consumption in the P and NP rat lines. Mamm. Genome 9: 949–955PubMedCrossRefGoogle Scholar
  5. Blum K., Braverman E. R., Holder J. M., Lubar J. F., Monastra V. J., Miller D., Lubar J. O., Chen T. J., Comings D. (2000). Reward definciency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoactive Drugs 32(Suppl. i–iv): 1–112Google Scholar
  6. Blum K., Braverman E. R., Wu S., Cull J. G., Chen T. J., Gill J., Wood R., Eisenberg A., Sherman M., Davis K. R., Mattthews D., Fisher L., Schnautz N., Walsh W., Pontius A., Zedar M., Kaats G., Comings D. (1997). Assocaition of polymorphisms of dopamie D2 receptor (DRD2), and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors (SAB). Mol. Psychiatry 2(3): 239–246PubMedCrossRefGoogle Scholar
  7. Blum K., Sheridan P. J., Wood R. C., Braverman E. R., Chen T. J., Cull J. G., Comings D. E. (1996). The D2 receptor gene as a determinant of reward deficiency syndrome, J. R. Soc. Med. 89(7): 396–400PubMedGoogle Scholar
  8. Blum K., Sheridan P. J., Wood R. C., Braveman E. R., Chen T. J., Cull J. G., Comings D. E. (1995). Dopamine D2 receptor gene variants: association and linkage studies in impulsive-addictive-compulsive behavior. Pharmacogenetics 5(3): 121–141PubMedCrossRefGoogle Scholar
  9. Cagetti E., Liang J., Spigelman L., Olsen R. W. (2003). Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function, and decreases behavioral responses to positive allosteric modulators of GABAA receptors. Mol. Pharmacol. 63(1): 53–64PubMedCrossRefGoogle Scholar
  10. Carr L., Foroud T., Bice P., Gobbett T., Ivashine J., Edenberg H., Lumeng L., Li T.-K. (1998). Mapping of a quantitative locus for alcohol consumption in selectively bred rat lines. Alcoholism: Clinical and Experimental Research 22: 884–887Google Scholar
  11. Carr L. G., Spence J. P., Peter Erikson C. J., Lumeng L., Li T.-K. (2003). AA and ANA rats exhibit the R100Q mutation in the GABAA receptor alpha 6 subunit. Alcohol 31(1–2): 93–97PubMedCrossRefGoogle Scholar
  12. Cigler T., LaForge K. S., McHugh P. F., Kapadia S. U., Leal S. M., Kreek M. J. (2001). Novel and previously reported single-nucleotide polymorphism in the human 5-HT(1B) receptor gene: no association with cocaine or alcohol abuse or dependence. Am. J. Med. Genet. 105(6): 489–497PubMedCrossRefGoogle Scholar
  13. Covault J., Gelernter J., Hesselbrock V., Nellissery M., Kranzler H. R. (2004). Allelic and Haplotypic Association of GABARA2 With Alcohol Dependence. Am. J. Med. Genet. B Neuropsychiatr. Genet. 129B: 104–109CrossRefGoogle Scholar
  14. Crabble J. C., Phillips T. J., Feller D. J., Hen R., Wenger C. D., Lessov C. N., Schafer G. L. (1996). Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat. Genet. 14(1):98–101CrossRefGoogle Scholar
  15. Di Chiara G., Imperato A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentration in the mesolimbic system of freely moving rats. Proc. Natl. Acad. USA 85: 5274–5278CrossRefGoogle Scholar
  16. Doerge R. W., Chruchill G. A. (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285–294PubMedGoogle Scholar
  17. Dyr W., McBride W. J., Lumeng L., Li T.-K. (1993). Effects of D1 and D2 dopamine receptor agents on ethanol consumption in the high-alcohol-drinking (HAD) line of rats. Alcohol 10: 207–212PubMedCrossRefGoogle Scholar
  18. Edenberg H. J., Dick D. M., Xuei X., Tian H., Almasy L., Bauer L. O., Crowe R. R., Goate A., Hesselbrock V., Jones K., Kwon J., Li T.-K., Nurnberger J. I. Jr., O’Connor S. J., Reich T., Rice J., Schuckit M. A., Porjesz B., Foroud T., Begleiter H. (2004). Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Human Genet. 74(4): 705–714CrossRefGoogle Scholar
  19. Edenberg H. J., Foroud T., Koller D. L., Goate A., Rice J., Van Eerdewegh P., Reich T., Cloninger C. R., Nurnberger J. I., Jr. Kowalczuk M., Wu B., Li T. K., Conneally P. M., Tischfield J. A., Wu W., Shears S., Crowe R., Hesselbrock V., Schuckit M., Porjesz B., Begleiter H. (1998). A family-based analysis of the association of the dopamine D2 receptor (DRD2) with alcoholism. Alcohol. Clin. Exp. Res 22(2): 505–12PubMedGoogle Scholar
  20. Falconer D. S., Mackay T. F. C. (1996). Introduction to Quantitative Genetics. (4th Ed.). Longman, Essex, UK.Google Scholar
  21. Fehr C., Grintschuk N., Szegedi A., Anghelescu I., Klawe C., Singer P., Hiemke C., Dahmen N. (2000). The HTR1B 861G>C receptor polymorphism among patients suffering from alcoholism, major depression, anxiety disorders and narcolepsy. Psychiatr. Res. 97(1): 1–10CrossRefGoogle Scholar
  22. Flint J., Mott R. (2001). Finding the molecular basis of quantitative traits: successes and pitfalls. Nat. Rev./Genet. 2: 437–445CrossRefGoogle Scholar
  23. Foroud T., Bice P., Castelluccio P., Bo R., Miller L., Ritchotte A., Lumeng L., Li T.-K., Carr, L. G. (2000). Identification of quantitative trait loci influencing alcohol consumption in the high alcohol drinking an low alcohol drinking rat lines. Behav. Genet. 30(2): 131–140PubMedCrossRefGoogle Scholar
  24. Gelernter J., Goldman D., Risch N. (1993). The A1 allele at the D2 dopamine receptor gene and alcoholism. A reappraisal. JAMA 269(13): 1673–1677PubMedCrossRefGoogle Scholar
  25. Gill K., Desaulniers N., Desjardins P., Lake K. (1998). Alcohol preference in AXB/BXA recombinant inbred mice: gender differences and gender-specific quantitative trait loci. Mamm. Genome 9: 929–935PubMedCrossRefGoogle Scholar
  26. Goldman D. (1993). The DRD2 dopamine receptor and the candidate gene approach in alcoholism. Alcohol Alcohol. Supplement 2: 27–29Google Scholar
  27. Goldman D., Urbanek M., Guenther D., Robin R., Long J. C. (1997). Linkage and association of functional DRD2 variant [Ser311Cys] and DRD2 makers to alcoholism, substance abuse and schizophrenia in Southwestern American Indians. Am. J. Med. Genet. 74(4): 386–394PubMedCrossRefGoogle Scholar
  28. Gorwood P., Aissi F., Batel P., Ades J., Cohen-Salmon C., Hamon M., Boni C., Lanfumey L. (2002). Reappraisal of the serotonin 5-HT(1B) receptor gene in a alcoholism: of mice and men. Brain Res. Bull. 57(1): 103–107PubMedCrossRefGoogle Scholar
  29. Grahame N., Li T.-K., Lumeng L. (1999). Selective breeding for high and low ethanol preference in mice. Behav. Genet. 29: 47–57PubMedCrossRefGoogle Scholar
  30. Green, P., Lange, K., and Cox, D. R. (1990). Documentation for CRIMAP, version 2.4, St. Louis: Department of Genetics, School of Medicine, Washington University, 1990Google Scholar
  31. Grobin A. C., Mathews D. B., Devaud L. L., Morrow A. L. (1998). The role of GABAA receptors in the acute and chronic effects of ethanol. Psychopharmacology 139: 2–19PubMedCrossRefGoogle Scholar
  32. Haley C. S., Knott S. A., Elsen J. M. (1994). Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136: 1195–1207PubMedGoogle Scholar
  33. Hasegawa Y., Higuchi S., Matsushita S., Miyaoka H. (2002). Association of polymorphism of the serotonin 1B receptor gene and alcohol dependence with inactive aldehyde dehydrogenase-2. J. Neural Transm. 109(4): 513–521PubMedCrossRefGoogle Scholar
  34. Hill E. M., Stoltenberg S. F., Bullard K. H., Li S., Zucker R. A., Burmeister M. (2002). Antisocial alcoholism and serotonin-related polymorphisms: association tests. Psychiatr. Genet. 12(3): 143–153PubMedCrossRefGoogle Scholar
  35. Hodge C. W., Samson H. H., Chappelle A. M. (1997). Alcohol self-administration: further examinations of the role of dopamine receptors in the nucleus accumbens. Alcohol. Clin. Exp. Res. 21: 1083–1091PubMedGoogle Scholar
  36. Keightley P. D., Bulfield G. (1993). Detection of quantiative trait loci from frequency changes of marker alleles under selection. Genet. Res. 62: 195–203PubMedCrossRefGoogle Scholar
  37. Koob G. F., Bloom F. E. (1988). Cellular and molecular mechanisms of drug dependence. Science 242: 715–723PubMedCrossRefGoogle Scholar
  38. Kranzler H. R., Hernandez-Avila C. A., Gelernter J. (2002). Polymorphism of the 5-HT1B receptor gene (HTR1B): strong within-locus linkage disequilibrium without association to antisocial substance dependence. Neuropsychopharmaclogy 26(1): 115–122CrossRefGoogle Scholar
  39. Lander E., Kruglyak L. (1995). Genetic dissection of complex traits: guide-lines for interpreting and reporting linkage results. Nat. Genet. 11: 241–247PubMedCrossRefGoogle Scholar
  40. Lappalainen J., Long J. C., Eggert M., Ozaki N., Robin R.W., Brown G. L., Naukkarinen H., Virkkunen M., Linnoila M., Goldman D. (1998). Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch. Gen. Psychiatry 55: 989–884PubMedCrossRefGoogle Scholar
  41. Lebowitz R. J., Stoller M., Beckmann J. S. (1987). Trait-based analyses for the detection of linkage between marker loci an quantitative trait loci in crosses between inbred lines. Theor. Appl. Genet. 73: 556–562CrossRefGoogle Scholar
  42. Lister R. G., Linnoila M. (1991). Alcohol, the chloride ionophore and endogenous ligands for benzodiazepine receptors. Neuropharmacology 30(12B): 1435–1440PubMedGoogle Scholar
  43. Low K., Crestani F., Keist R., Benke D., Brunig I., Benson J.A., Fritschy J. M., Rulicke T., Bluethmann H., Mohler H. (2000). Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290: 131–134PubMedCrossRefGoogle Scholar
  44. McClearn, G. E., Wilson, J. R., and Meridith, W. (1970). In G. Lindzey and D. D. Thiessen (eds.), Contributations to Behavior-Genetic Analysis: The Mouse as a Prototype, New York: Appleton-Century-Crofts, pp. 3–22Google Scholar
  45. Melo J. A, Shendure J, Pociask K, Silver M. (1996). Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nature Genetics 13: 147–153.PubMedCrossRefGoogle Scholar
  46. Nuzhdin S.V., Keightley P. D., Pasyukova E. G., Morozova E. A. (1998). Mapping quantitative trait loci affecting sternopleural bristle number in Drosophila melanogaster using changes of marker allele frequencies in divergently selected lines. Genet. Res. 72: 79–91PubMedCrossRefGoogle Scholar
  47. Phillips T. J., Crabble J. C., Metten P., Belknap J. K. (1994). Location of genes affecting alcohol drinking in mice. Alcohol. Clin. Exp. Res. 18: 931–941PubMedCrossRefGoogle Scholar
  48. Phillips T. J., Shen E. H. (1996). Neruochemical bases of locomotion and ethanol stimulant effects. Int. Rev. Neurobiol. 39: 243–282PubMedGoogle Scholar
  49. Phillips T. J., Brown K. J., Burkhart-Kasch S., Wenger C. D., Kelly M. A., Rubinstein M., Grandy D. K., Low M. J. (1998). Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat. Neurosci. 1(7): 610–615PubMedCrossRefGoogle Scholar
  50. Rodgers D. A. (1972). Factors underlying differences in alcohol preference in inbred strains of mice. In: Kissin B., Begleiter H. (eds). The Biology of Alcoholism. Plenum, NY, pp. 107–130Google Scholar
  51. Rudolph U., Crestani F., Benke D., Brunig I., Benson J. A., Fritschy J. M., Martin J. R., Bluethmann H., Mohler H. (1999). Benzodiazepine actions mediated by specific gamma-aminobutric acid (A) receptor subtypes. Nature 401: 796–800PubMedCrossRefGoogle Scholar
  52. Saba L., Porcella A., Congeddu E., Colombo G., Peis M., Pistis M., Gessa G. L., Pani L. (2001). The R100Q mutation of the GABAA α6 receptor subunit may contribute to voluntary aversion to ethanol in the sNP rat line. Brain Res. Mol. Brain Res. 87: 263–270PubMedCrossRefGoogle Scholar
  53. Samson H. H., Hodge C. W., Tolliver G. A., Haraguchi M. (1993). Effects of dopamine agonists and antagonists on ethanol-reinforced behavior: the environment of the nucleus accumbens. Brain Res. Bull. 30: 133–141PubMedCrossRefGoogle Scholar
  54. Samson H. H., Tolliver G. A., Schwarz-Stevens K. (1990). Oral ethanol self-administration: a behavioral pharmacological approach to CNS contron mechanisms. Alcohol 7: 187–191PubMedCrossRefGoogle Scholar
  55. Seaton G., Haley C. S., Knott S. A., Kearsey M., Visscher P. M. (2002). QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18: 339–340PubMedCrossRefGoogle Scholar
  56. Sokal R. R., Rohlf, F. J. (1995). Biometry. Freeman, San FranciscoGoogle Scholar
  57. Sun H.F., Chang Y. T., Fann C. S., Chang C. J., Chen Y. H., Hsu Y. P., Yu W. Y., Cheng A. T. (2002). Association study of novel human serotonin 5-HT(1B) polymorphisms with alcohol dependence in Taiwanese Han. Biol. Psychiatry 51(11): 896–901PubMedCrossRefGoogle Scholar
  58. Tarantino L. M., McClearn G. E., Rodriguez L. A., Plomin R. (1998). Confirmation of quantitative trait loci for alcohol preference in mice. Alcohol. Clin. Exp. Res. 22: 1099–1105PubMedGoogle Scholar
  59. Tauber M., Calame-Droz E., Prut L., Rudolph U., Crestani F. (2003). Alpha2-gamma-Aminobutyric acid (GABA)A receptors are the molecular substrates mediating precipitation of narcosis but not of sedation by the combined use of diazepam and alcohol in vivo. Eur. J. Neurosci. 18: 2599–2604PubMedCrossRefGoogle Scholar
  60. Wise R. A., Bozarth M. A. (1987). A psychomotor stimulant theory of addiction. Psychol. Rev. 94: 469–492PubMedCrossRefGoogle Scholar
  61. Witmer P. D., Dohney K. F., Adams M. K., Boehm C. D., Dizon J. S., Goldstein J. L., Templeton T. M., Wheaton A. M., Dong P. N., Pugh E. W., Nussbaum R. L., Hunter K., Kelmenson J. A., Bowe L. B., Brownstein M. J. (2003). The development of a highly informative mouse simple sequence length polymoriphism (SSLP) marker set and construction of a mouse family tree using parsimony analysis. Genome Research 13: 485–491PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Paula J. Bice
    • 1
    • 6
  • Tatiana Foroud
    • 2
  • Lucinda G. Carr
    • 1
  • Lili Zhang
    • 1
  • Lixiang Liu
    • 2
  • Nicholas J. Grahame
    • 3
  • Lawrence Lumeng
    • 1
  • Ting-Kai Li
    • 4
  • John K. Belknap
    • 5
  1. 1.Department of MedicineIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of PsychologyIndiana University Purdue University at IndianapolisIndianapolisUSA
  4. 4.National Institute of Alcohol Abuse and AlcoholismBethesdaUSA
  5. 5.VA Medical Center (R&D5), and Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandUSA
  6. 6.Department of MedicineIndiana University School of MedicineIndianapolisUSA

Personalised recommendations