Behavior Genetics

, Volume 36, Issue 2, pp 238–247 | Cite as

Genetic Factors in Physical Activity and the Equal Environment Assumption – the Swedish Young Male Twins Study

Article

The aims of this study were to examine the genetic contribution on physical activity (PA) within a nationwide population of young adult male twin pairs from Sweden and to investigate the equal environment assumption (EEA) in relation to PA. Information on PA was collected by questionnaires in 1998 and 2002 and the impact of genetic factors was estimated by structural equation modeling (SEM). The study included 1022 pairs of twins and the best fitting SEM-model gave a heritability of 49% (95% CI, 40–56%) for total PA and all PA dimensions showed genetic contributions between 40% and 65%. Non-shared environmental factors were also important, whereas shared environmental factors did not contribute to PA behaviors. The EEA was investigated with a linear regression model, examining if the twins contact frequency predicted within-pair differences in PA, and further by a simulation study. We found no support for violation of the EEA.

Key words

Environment epidemiology genetics physical activity twins 

References

  1. Aarnio M., Winter T., Kujala U. M., and Kaprio J. (1997). Familial aggregation of leisure-time physical activity – a three generation study. Int. J. Sports Med. 18:549–556PubMedCrossRefGoogle Scholar
  2. Akaike H. (1987). Factor analysis and aic. Psychometrika 52:317–332CrossRefGoogle Scholar
  3. Anderssen N. and Wold B. (1992). Parental and peer influences on leisure-time physical activity in young adolescents. Res. Q. Exerc. Sport 63:341–348PubMedGoogle Scholar
  4. Baecke J. A., Burema J. and Frijters J. E. (1982). A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am. J. Clin. Nutr. 36:936–942PubMedGoogle Scholar
  5. Bauman K. E. and Ennett S. T. (1996). On the importance of peer influence for adolescent drug use: commonly neglected considerations. Addiction 91:185–198PubMedCrossRefGoogle Scholar
  6. Bergeman C. S., Neiderhiser J. M., Pedersen N. L., Plomin R. (2001). Genetic and environmental influences on social support in later life: a longitudinal analysis. Int. J. Aging Hum. Dev. 53:107–135PubMedCrossRefGoogle Scholar
  7. Beunen G. and Thomis M. (1999). Genetic determinants of sports participation and daily physical activity. Int. J. Obes. Relat Metab. Disord. 23(Suppl 3):S55–S63PubMedCrossRefGoogle Scholar
  8. Boomsma D. I., van den Bree M. B., Orlebeke J. F. and Molenaar P. C. (1989). Resemblances of parents and twins in sports participation and heart rate. Behav. Genet. 19:123–141PubMedCrossRefGoogle Scholar
  9. Cederlöf R., Friberg L., Jonsson E. and Kaij L. (1961). Studies of similarity diagnosis in twins with the aid of mailed questionnaires. Acta Genet. Med. Gemellol. (Roma). 11:338–362Google Scholar
  10. Cronk N. J., Slutske W. S., Madden P. A., Bucholz K. K., Reich W. and Heath A. C. (2002). Emotional and behavioral problems among female twins: an evaluation of the equal environments assumption. J. Am. Acad. Child Adolesc. Psychiatry 41:829–837PubMedCrossRefGoogle Scholar
  11. Eaves L., Foley D. and Silberg J. (2003). Has the “Equal Environments” assumption been tested in twin studies?. Twin Res. 6:486–489PubMedCrossRefGoogle Scholar
  12. Evans D. M., Gillespie N. A., Martin N. G. (2002). Biometrical genetics. Biol. Psychol. 61:33–51PubMedCrossRefGoogle Scholar
  13. Evans D. M. and Martin N. G. (2000). The validity of twin studies. GeneScreen 1:77–79CrossRefGoogle Scholar
  14. Heath E. M., Morken N. W., Campbell K. A., Tkach D., Boyd E. A. and Strom D. A. (2001). Use of buccal cells collected in mouthwash as a source of DNA for clinical testing. Arch. Pathol. Lab Med. 125:127–133PubMedGoogle Scholar
  15. Heller R. F., O’Connell D. L., Roberts D. C., Allen J. R., Knapp J. C., Steele P. L. and Silove D. (1988). Lifestyle factors in monozygotic and dizygotic twins. Genet. Epidemiol. 5:311–321PubMedCrossRefGoogle Scholar
  16. Horwitz A. V., Videon T. M., Schmitz M. F. and Davis D. (2003). Rethinking twins and environments: possible social sources for assumed genetic influences in twin research. J. Health Soc. Behav. 44:111–129PubMedCrossRefGoogle Scholar
  17. Kamei Y., Miura S., Suzuki M., Kai Y., Mizukami J., Taniguchi T., Mochida K., Hata T., Matsuda J., Aburatani H., Nishino I., and Ezaki O. (2004). Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 279:41114–41123PubMedCrossRefGoogle Scholar
  18. Kaprio J., Koskenvuo M. and Sarna S. (1981). Cigarette smoking, use of alcohol, and leisure-time physical activity among same-sexed adult male twins. Prog. Clin. Biol. Res. 69(Pt C):37–46PubMedGoogle Scholar
  19. Kendler K. S. and Gardner C. O. (1998). Twin studies of adult psychiatric and substance dependence disorders: are they biased by differences in the environmental experiences of monozygotic and dizygotic twins in childhood and adolescence?. Psychol. Med. 28:625–633PubMedCrossRefGoogle Scholar
  20. Kendler K. S. and Prescott C. A. (1998). Cannabis use, abuse, and dependence in a population-based sample of female twins. Am. J. Psychiatry 155:1016–1022PubMedGoogle Scholar
  21. Klump K. L., Holly A., Iacono W. G., McGue M., and Willson L. E. (2000). Physical similarity and twin resemblance for eating attitudes and behaviors: a test of the equal environments assumption. Behav. Genet. 30:51–58PubMedCrossRefGoogle Scholar
  22. Lauderdale D. S., Fabsitz R., Meyer J. M., Sholinsky P., Ramakrishnan V. and Goldberg J. (1997). Familial determinants of moderate and intense physical activity: a twin study. Med. Sci. Sports Exerc. 29:1062–1068PubMedGoogle Scholar
  23. Livingstone M. B. and Black A. E. (2003). Markers of the validity of reported energy intake. J. Nutr. 133(Suppl 3):895S–920SPubMedGoogle Scholar
  24. Loos R. J., Rankinen T., Tremblay A., Perusse L., Chagnon Y., and Bouchard C. (2005). Melanocortin-4 receptor gene and physical activity in the Quebec Family Study. Int. J. Obes. Relat. Metab. Disord. 29:420–428CrossRefGoogle Scholar
  25. Madden P. A., Bucholz K. K., Todorov A. A., Grant J. D., and Heath A. C. (2002). The assessment of peer selection and peer environmental influences on behavior using pairs of siblings or twins. Twin. Res. 5:38–43PubMedCrossRefGoogle Scholar
  26. Maia J. A., Thomis M. and Beunen G. (2002). Genetic factors in physical activity levels: a twin study. Am. J. Prev. Med. 23:87–91PubMedCrossRefGoogle Scholar
  27. Neale M. C., Boker S. M., Xie G., and Maes H. H. (2002). Mx: Statistical Modeling. VCU Department of Psychiatry, Richmond, VAGoogle Scholar
  28. Neale M. C., Cardon L. R. (1992). Methodology for Genetic Studies of Twins and Families. Kluwer Academic Publishers, DordrechtGoogle Scholar
  29. Pedersen, N., and Lichtenstein P. (2000). Scientific Evaluation of the Swedish Twin Registry. Swedish Council for Planning and Coordination of Research. Report no 2000-10, Stockholm, SwedenGoogle Scholar
  30. Perusse L., Leblanc C., Bouchard C. (1988). Familial resemblance in lifestyle components: results from the Canada Fitness Survey. Can. J. Public Health 79:201–205PubMedGoogle Scholar
  31. Perusse L., Tremblay A., Leblanc C. and Bouchard C. (1989). Genetic and environmental influences on level of habitual physical activity and exercise participation. Am. J. Epidemiol. 129:1012–1022PubMedGoogle Scholar
  32. Philippaerts R. M., Westerterp K. R. and Lefevre J. (1999). Doubly labelled water validation of three physical activity questionnaires. Int. J. Sports Med. 20:284–289PubMedCrossRefGoogle Scholar
  33. Pols M. A., Peeters P. H., Bueno-De-Mesquita H. B., Ocke M. C., Wentink C. A., Kemper H. C. and Collette H. J. (1995). Validity and repeatability of a modified Baecke questionnaire on physical activity. Int. J. Epidemiol. 24:381–388PubMedCrossRefGoogle Scholar
  34. Rasmussen F. and Johansson-Kark M. (2002). The Swedish Young Male Twins Register: a resource for studying risk factors for cardiovascular disease and insulin resistance. Twin. Res. 5:433–435PubMedCrossRefGoogle Scholar
  35. SAS Institute (1999). The Statistical Analysis System, Version 8. SAS Institute Inc. Cary, NCGoogle Scholar
  36. Sham P. (1998). Statistics in Human Genetics. Hodder Headline Group, LondonGoogle Scholar
  37. Simonen R., Levalahti E., Kaprio J., Videman T. and Battie M. C. (2004). Multivariate genetic analysis of lifetime exercise and environmental factors. Med. Sci. Sports Exerc. 36:1559–1566PubMedGoogle Scholar
  38. Simonen R. L., Perusse L., Rankinen T., Rice T., Rao D. C., and Bouchard C. (2002). Familial aggregation of physical activity levels in the Quebec Family Study. Med. Sci. Sports Exerc. 34:1137–1142PubMedCrossRefGoogle Scholar
  39. Simonen R. L., Rankinen T., Perusse L., Leon A. S., Skinner J. S., Wilmore J. H., Rao D. C. and Bouchard C. (2003a). A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol. Behav. 78:751–757CrossRefGoogle Scholar
  40. Simonen R. L., Rankinen T., Perusse L., Rice T., Rao D. C., Chagnon Y. and Bouchard C. (2003b). Genome-wide linkage scan for physical activity levels in the Quebec Family study. Med. Sci. Sports Exerc. 35:1355–1359CrossRefGoogle Scholar
  41. Stefan N., Vozarova B., Del Parigi A., Ossowski V., Thompson D. B., Hanson R. L., Ravussin E. and Tataranni P. A. (2002). The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism. Int. J. Obes. Relat. Metab. Disord. 26:1629–1632PubMedCrossRefGoogle Scholar
  42. Suwa M., Nakano H., Higaki Y., Nakamura T., Katsuta S. and Kumagai S. (2003). Increased wheel-running activity in the genetically skeletal muscle fast-twitch fiber-dominant rats. J. Appl. Physiol. 94:185–192PubMedGoogle Scholar
  43. Swallow J. G., Carter P. A., Garland T. Jr. (1998). Artificial selection for increased wheel-running behavior in house mice. Behav. Genet. 28:227–237PubMedCrossRefGoogle Scholar
  44. Wold B. and Anderssen N. (1992). Health promotion aspects of family and peer influences on sports participation. Int. J. Sport Psychol. 23:343–359Google Scholar
  45. World Health Organization (2002). The World Health Report 2002: Reducing risks to health, promoting healthy life. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Marit Eriksson
    • 1
    • 2
  • Finn Rasmussen
    • 1
    • 2
    • 3
  • Per Tynelius
    • 1
    • 2
  1. 1.The Child and Adolescent Public Health Epidemiology Group, Department of Public Health SciencesKarolinska InstituteStockholmSweden
  2. 2.Division of EpidemiologyStockholm Centre for Public HealthStockholmSweden
  3. 3.Department of Public Health SciencesKarolinska InstituteStockholmSweden

Personalised recommendations