Behavior Genetics

, Volume 36, Issue 1, pp 100–111

Genome-wide Linkage Scan to Identify Loci for Age at First Cigarette in Dutch Sibling Pairs

  • Jacqueline M. Vink
  • Danielle Posthuma
  • Michael C. Neale
  • P. Eline Slagboom
  • Dorret I. Boomsma

The heritability of age at first cigarette was estimated in 5883 Dutch twins and siblings registered with the Netherlands Twin Register. Heritability was 60% for males and 39% for females. Shared environmental influences were found in females only (30%). Linkage analyses were performed on data of 422 DZ twins and siblings from 175 families, forming 368 sibling pairs. Genomic regions that may harbor susceptibility loci for age at first cigarette with LOD score greater than 2 were detected on chromosomes 5, 14 and 22. A simultaneous analysis of these three genomic regions showed that most of the variance was explained by the linkage effect on chromosome 5 (205 cM). This peak encloses the D1A dopamine receptor gene which is a functional candidate gene for smoking behavior.


Age at first cigarette dopamine linkage QTL sex differences 


  1. Abecasis G. R., Cherny S. S., Cookson O. C., Cardon L. (2002). Merlin-rapid analyses of dense genetic maps using sparse gene flow trees. Nature Genet. 30:97–101CrossRefPubMedGoogle Scholar
  2. Abecasis G. R., Cherny S. S., Cookson W. O., Cardon L. R. (2001). GRR: graphical representation of relationship errors. Bioinformatics 17:742–743CrossRefPubMedGoogle Scholar
  3. Bergen A. W., Korczak J. F., Weissbecker K. A., Goldstein A. M. (1999). A genome-wide search for loci contributing to smoking and alcoholism. Genet. Epidemiol. 17(S1):S55–S60PubMedGoogle Scholar
  4. Bierut L. J., Rice J. P., Goate A., Hinrichs A. L., Saccone N. L., Foroud T., Edenberg H. J., Cloninger C. R., Begleiter H., Conneally P. M., Crowe R. R., Hesselbrock V., et al., (2004). A genomic scan for habitual smoking in families of alcholics: common and specific genetic factors in substance dependence. Am. J. Med. Genet. 124(A):19–27CrossRefGoogle Scholar
  5. Boomsma D. I., Vink J. M., Beijsterveldt C. E. Mv., Geus de E. J. C., Beem A. L., Mulder E. J. C. M., Riese H., Willemsen A. H. M., Bartels M., Berg van den M., Derks E. M., Graaff S. C., et al., (2002). Netherlands Twin Register: a focus on longitudinal research. Twin Res. 5(5):401–406CrossRefPubMedGoogle Scholar
  6. Comings D. E., Gade R., Wu S., Chiu C., Dietz G., Muhleman D., Saucier G., Ferry L., Rosenthal R. J., Lesieur H. R., Rugle L. J., MacMurray P. (1997). Studies of the potential role of the dopamine D1 receptor gene in addictive behaviors. Mol. Psychiat. 2(1):44–56CrossRefGoogle Scholar
  7. Comuzzie A. G., Blangero J., Mahaney M. C., Mitchell B. M., Stern M. P., MacCluer J. W. (1993). Quantitative genetics of sexual dimorphism in body fat measurements. Am. J. Hum. Biol. 6:725–734CrossRefGoogle Scholar
  8. Dolan C. I. (1994). Factor analysis of variables with 2,3,5 and 7 response categories: a comparison of categorical variable estimators using simulated data. Brit. J. Math. Statist. Psychol. 47:309–326Google Scholar
  9. Duggirala R., Almasy L., Blangero J. (1999). Smoking behavior is under the influence of a major quantitative trait locus on human chromosome 5q. Genet. Epidemiol. 17(S1):S139-S144PubMedGoogle Scholar
  10. Everret S. A., Warren C. W., Kann S. D., Husten C. G., Crosset L. S. (1999). Initiation of cigarette smoking and subsequent smoking behavior among U.S. high school students. Prevent. Med. 29(5):327–333CrossRefGoogle Scholar
  11. Fulker D. W., Cherny S. S. (1996). An improved multipoint sib-pair analysis of quantitative traits. Behav. Genet. 26(5):527–531PubMedCrossRefGoogle Scholar
  12. Gelernter J., Liu X., Hesselbrock V., Page G. P., Goddard A., Zhang G., (2004). Results of a genomewide linkage scan: support for chromosome 9 and 11 loci increasing risk for cigarette smoking. Am. J. Med. Gen. Part B (Neuropsychiat. Genet.) 128B:94–101CrossRefGoogle Scholar
  13. Geus de E. J. C., Posthuma D., Kupper N., Berg van den M., Willemsen A. H. M., Beem A. L., Slagboom P. J., Boomsma D. I. (2005). A whole-genome scan for 24-hour respiration rate: a major locus at 10q26 influences respiration during sleep. Am. J. Hum. Genet. 76:100–111CrossRefPubMedGoogle Scholar
  14. Goring H. H. H., Terwilliger J. D., Blangero J. (2001). Large upward bias in estimation of locus-specific effects from genomewide scans. Am. J. Hum. Genet. 69:1357–1369CrossRefPubMedGoogle Scholar
  15. Heath A. C., Martin N. C. (1993). Genetic models for the natural history of smoking: evidence for a genetic influence on smoking persistence. Addict. Behav. 18:19–34CrossRefPubMedGoogle Scholar
  16. Heath A. C., Meyer J. M., Kirk K. M., Martin N. G. (1999). Genetic and social determinants of initiation of smoking in Australian twins. Behav. Genet. 29(6):395–407CrossRefPubMedGoogle Scholar
  17. Heijmans, B. T., Beekman, M., Putter, H., Lakenberg, N., van der Wijk, H. J., Whitfield, J. B., Posthuma, D., Pedersen, N., Martin, N. G., Boomsma, D. I., and Slagboom, P. E. (2005). Meta-analysis of four new genome scans for lipid parameters and analysis of positional candidates in positive linkage regions. Eur. J. Hum. Genet. 13(10): 1143–1153.CrossRefPubMedGoogle Scholar
  18. Johnson T. P., Mott J. A. (2001). The reliability of self-reported age of onset of tobacco, alcohol and illicit drug use. Addiction 96:1187–1198CrossRefPubMedGoogle Scholar
  19. Kong A., Gudbjartsson D. F., Sainz J., Jonsdottir G. M., Gudjonsson S. A., Richardson B., Sigurdardottir S., Barnard J., Hallbeck B., Masson G., Shlien A., Palsson S. T., et al. (2002). A high-resolution recombination map of the human genome. Nature Genet. 31(3):241–247PubMedGoogle Scholar
  20. Koopmans J. R., Slutske W., Heath A. C., Neale M. C., Boomsma D. I. (1999). The genetics of smoking initiation and quantity smoked in Dutch adolescent and young adult twins. Behav. Genet. 29(6):383–393CrossRefPubMedGoogle Scholar
  21. Lamb J. A., Barnby G., Bonora E., Sykes N., Bacchelli E., Blasi F., Maestrini E., Broxholme J., Tzenova J., Weeks D. E., Bailey A. J., Monaco A. P. (2005). Analysis of IMGSAC autism susceptibility loci: evidence for sex limited and parent of origin specific effects. J. Med. Genet. 42(2):132–137CrossRefPubMedGoogle Scholar
  22. Lander, E. and Kruglyak, L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11(November):241–247Google Scholar
  23. Lando H. A., Thai D. T., Murray D. M., Robinson L. A., Jeffery R. W., Sherwood N. E., Hennrikus D. J. (1999). Age of initiation, smoking patterns, and risk in a population of working adults. Prevent. Med. 29(6):590–598CrossRefGoogle Scholar
  24. Lerman C., Caporaso N. E., Audrian J., Main D., Bowman E. D., Lockshin B., Boyd N. R. Shields P. G. (1999). Evidence suggesting the role of specific genetic factors in cigarette smoking. Health Psychol. 18(1):14–20CrossRefPubMedGoogle Scholar
  25. Li M. D., Cheng R., Ma J. Z., Swan G. E. (2003a). A meta-analysis of estimated and environmental effects on smoking behavior in male and female adult twins. Addiction 98(1):23–31CrossRefGoogle Scholar
  26. Li M. D., Ma J. Z., Cheng R., Dupont R. T., Williams N. J., Crews K. M., Payne T. J., Elston R. C. (2003b). A genome-wide scan to identify loci for smoking rate in the Framingham Heart Study population. BMC Genetics 4(Suppl 1):S103CrossRefGoogle Scholar
  27. Ling D., Niu T., Feng Y., Xing H., Xu X. (2004). Association between polymorphism of the dopamine transporter gene and early smoking onset: an interaction risk on nicotine dependence. J. Hum. Genet. 49:35–39CrossRefPubMedGoogle Scholar
  28. Lystig, T. C. (2003). Adjusted P values for genome-wide scans. Genetics 164(4): 1683–1687PubMedGoogle Scholar
  29. Neale, M. C., Boker, S. M., Xie, G., and Maes, H. H. (1999). Mx: statistical modeling. Richmond, VA: Medical College of Virginia, Department of PsychiatryGoogle Scholar
  30. Neale M. C., Eaves L. J., Kendler K. S. (1994). The power of the classical twin study to resolve variation in threshold traits. Behav. Gen. 24(3): 239–258CrossRefPubMedGoogle Scholar
  31. Posthuma D., Luciano M., Geus de E. J. C., Wright M., Slagboom P. E., Montgomery G. W., Boomsma D. I., Martin N. G. (2005). A genomewide scan for intelligence identifies quantitative trait Loci on 2q and 6p. Am. J. Hum. Genet. 77(2):318–326CrossRefPubMedGoogle Scholar
  32. Sabol S. Z., Nelson M. L., Fisher G., Marcus S. E., Gunzerath L., Brody C. L., Hu S., Sirota L. A., Greenberg B. D., Lucas IV F. R., Benjamin J., Murphy D. L., et al. (1999). A genetic association for cigarette smoking behavior. Health Psychol. 18(1):7–13CrossRefPubMedGoogle Scholar
  33. Saccone N. L., Neuman R. J., Saccone S. F., Rice J. P. (2003). Genetic analysis of maximum cigarette-use phenotypes. BMC Genet. 4(Suppl 1):S105CrossRefPubMedGoogle Scholar
  34. Sham P. (1998). Statistics in human genetics. Oxford University Press, New YorkGoogle Scholar
  35. Stallings M. C., Hewitt J. K., Beresford T., Heath A. C., Eaves L. J. (1999). A twin study of drinking and smoking onset and latencies from first use to regular use. Behav. Genet. 29(6):409–421CrossRefPubMedGoogle Scholar
  36. Straub R. E., Sullivan P. F., Ma Y., Myakishev M. V., Harris-Kerr C., Wormley B., Kadami B., Sadek H., Silverman M. A., Webb B. T., Neale M. C., Bulik C. M., et al. (1999). Susceptibility genes for nicotine dependence: a genome scan and followup in an independent sample suggest that regions on chromosomes 2, 4, 10, 16, 17 and 18 merit further study. Mol. Psychiat. 4:129–144CrossRefGoogle Scholar
  37. Sullivan P. F., Kendler K. S. (1999). The genetic epidemiology of smoking. Nicotine Tobacco Res. 1:S51-S57CrossRefGoogle Scholar
  38. Sullivan P. F., Neale B., Oord van den E., Miles M. F., Neale M. C., Bulik C. M., Joyce P. R., Straub R. E., Kendler K. S. (2004). Candidate genes for nicotine dependence via linkage, epistasis, and bioinformatics. Am. J. Med. Gen. Part B (Neuropsychiat. Genet.) 126B:23–36CrossRefGoogle Scholar
  39. Towne B., Blangero J., Siervogel R. M. (1993). Genotype by sex interaction in measures of lipids, lipoproteins, and apolipoproteins. Genet. Epidemiol. 10:611–616CrossRefPubMedGoogle Scholar
  40. Towne B., Siervogel R. M., Blangero J. (1997). Effects of genotype-by-sex interaction on quantitative trait linkage analysis. Genet. Epidemiol. 14:1053–1058CrossRefPubMedGoogle Scholar
  41. Vink J. M., Beem A. L., Posthuma D., Neale M. C., Willemsen G., Kendler K. S., Slagboom P. E. Boomsma D. I. (2004). Linkage analysis of smoking initiation and quantity in Dutch sibling pairs. The Pharmacogenom. J. 4:274–282CrossRefGoogle Scholar
  42. Vink J. M., Willemsen G., Boomsma D. I. (2005). Heritability of smoking initiation and nicotine dependence. Behav. Genet. 35(4):397–406CrossRefPubMedGoogle Scholar
  43. Wang, D., Ma, J. Z., and Li, M. D. (2005). Mapping and verification of susceptibility loci for smoking quantity using permutation linkage analysis. Pharmacogenom. J.: 1–7 (advance online publication)Google Scholar
  44. Weiss L. A., Abney M., Cook E. H. J., Ober C. (2005). Sex-specific genetic architecture of whole blood serotonin levels. Am. J. Hum. Genet. 76(1):33–41CrossRefPubMedGoogle Scholar
  45. Yuan B., Vaske D., Weber J. L., Beck J., Sheffield V. C. (1997). Improved set of short-tandem-repeat polymorphisms for screening the human genome. Am. J. Hum. Genet. 60(2):459–460PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jacqueline M. Vink
    • 1
    • 4
  • Danielle Posthuma
    • 1
  • Michael C. Neale
    • 2
  • P. Eline Slagboom
    • 3
  • Dorret I. Boomsma
    • 1
  1. 1.Department of Biological PsychologyVrije UniversiteitBT AmsterdamThe Netherlands
  2. 2.Departments of Psychiatry and Human Genetics, Virginia Institute for Psychiatry and Behavioral GeneticsMedical College of Virginia, Virginia Commonwealth UniversityRichmondUSA
  3. 3.Section Molecular Epidemiology, Sylvius LaboratoryLeiden University Medical CentreLeidenThe Netherlands
  4. 4.Department of Biological PsychologyVrije UniversiteitBT AmsterdamThe Netherlands

Personalised recommendations