Advertisement

Behavior Genetics

, Volume 36, Issue 1, pp 77–86 | Cite as

Linkage Analyses of IQ in the Collaborative Study on the Genetics of Alcoholism (COGA) Sample

  • Danielle M. Dick
  • Fazil Aliev
  • Laura Bierut
  • Alison Goate
  • John Rice
  • Anthony Hinrichs
  • Sarah Bertelsen
  • Jen C. Wang
  • Gerald Dunn
  • Sam Kuperman
  • Marc Schuckit
  • John NurnbergerJr.
  • Bernice Porjesz
  • Henri Beglieter
  • John Kramer
  • Victor Hesselbrock
Article

Intelligence, as measured by standardized psychological tests, has been shown to be highly heritable, though identifying specific genes influencing general intelligence has proven difficult. We conducted genome-wide linkage analyses to identify chromosomal regions containing genes influencing intelligence, as measured by WAIS full-scale IQ (FSIQ), performance IQ (PIQ) and verbal IQ (VIQ). Non-parametric multipoint linkage analyses were conducted with Merlin-regress software, using a sample of 1111 genotyped and phenotyped individuals from 201 families, ascertained as part of the Collaborative Study on the Genetics of Alcoholism (COGA). The strongest evidence of linkage was obtained for FSIQ on chromosome 6 (LOD=3.28, 12 cM) near the marker D6S1006. This region was also implicated with suggestive linkage in a recently published genome screen of IQ in Australian and Dutch twin pairs, and it has been implicated in linkage studies of developmental dyslexia. Our findings provide further support that chromosome 6p contains gene(s) affecting intelligence.

Keywords

Cognitive ability genetics intelligence IQ linkage analyses 

Notes

Acknowledgments

The Collaborative Study on the Genetics of Alcoholism (COGA) (Principal Investigator: H. Begleiter; Co-Principal Investigators: L. Bierut, H. Edenberg, V. Hesselbrock, B. Porjesz) includes nine different centers where data collection, analysis, and storage take place. The nine sites and Principal Investigators and Co-Investigators are: University of Connecticut (V. Hesselbrock); Indiana University (H. Edenberg, J. Nurnberger Jr., P.M. Conneally, T. Foroud); University of Iowa (S. Kuperman, R. Crowe); SUNY HSCB (B. Porjesz, H. Begleiter); Washington University in St. Louis (L. Bierut, A. Goate, J. Rice); University of California at San Diego (M. Schuckit); Howard University (R. Taylor); Rutgers University (J. Tischfield); Southwest Foundation (L. Almasy). Zhaoxia Ren serves as the NIAAA Staff Collaborator. This national collaborative study is supported by the NIH Grant U10AA08401 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute on Drug Abuse (NIDA). Partial support was also provided by NCRR Grant M01-RR06192 to the University of Connecticut School of Medicine GCRC.

In memory of Theodore Reich, M.D., Co-Principal Investigator of COGA since its inception and one of the founders of modern psychiatric genetics, we acknowledge his immeasurable and fundamental scientific contributions to COGA and the field.

References

  1. Abecasis G. R., Cherny S. S., Cookson W. O. C., and Cardon L. R. (2000). Multipoint engine for rapid likelihood inference. Am. J. Hum. Genet. 67 (Suppl): 1816Google Scholar
  2. Antonarakis S. E., Blouin J. L., Pulver A. E., Wolyniec P., Lasseter V. K., Nestadt G., Kasch L., Babb R., Kazazian H. H., Dombroski B., Kimberland M., Ott J., Housman D., Karayiorgou M., MacLean C. J. (1995). Schizophrenia susceptibility and chromosome 6p24-22. Nat. Genet. 11:235–236CrossRefPubMedGoogle Scholar
  3. Bailer U., Leisch F., Meszaros K., Lenzinger E., Willinger U., Strobl R., Gebhardt C., Gerhard E., Fuchs K., Sieghart W., Kasper S., Hornik K., Aschauer H. N. (2000). Genome scan for susceptibility loci for schizophrenia. Neuropsychobiology 42:175–182CrossRefPubMedGoogle Scholar
  4. Boehnke M. (1991). Allele frequency estimation from pedigree data. Am. J. Hum. Genet. 48:22–25PubMedGoogle Scholar
  5. Bouchard T. J., and McGue M. (1981). Familial studies of intelligence: a review. Science 212:1055–1059PubMedCrossRefGoogle Scholar
  6. Bucholz K. K., Cadoret R., Cloninger C. R., Dinwiddie S. H., Hesselbrock V. M., Nurnberger J. J. I., Reich T., Schmidt I., Schuckit M. A. (1994). A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J. Stud. Alcohol 55:149–158PubMedGoogle Scholar
  7. Buyske, S., Bates, M. E., Gharani, N., Matise, T. C., Tischfield, J. A., and Manowitz P. (in press). Cognitive traits link to human chromosomal regions. Behav. Genet.Google Scholar
  8. Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., and DeFries J. S. (1994). Quantitative trait locus for reading disability on chromosome 6. Science 266:276–279PubMedCrossRefGoogle Scholar
  9. Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., and DeFries J. S. (1995). Quantitative trait locus for reading disability: correction. Science 268:1553PubMedCrossRefGoogle Scholar
  10. Chorney M. J., Chorney K., Seese N., Owen M. J., Daniels J., McGuffin P., Thompson L. A., Detterman D. K., Benbow C., Lubinski D., Eley T. and Plomin R. (1998). A quantitative trait locus associated with cognitive ability in children. Psychol. Sci. 9:159–166CrossRefGoogle Scholar
  11. Cope N., Harold D., Hill G., Moskvina V., Stevenson J., Holmans P., Owen M. J., O’Donovan M. C., and Williams J. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. Am. J. Hum. Genet. 76:581–591CrossRefPubMedGoogle Scholar
  12. Comings D.E., Wu S., Rostamkhani M., McGue M., Lacono W.G., Cheng L.S. and MacMurray J.P. (2003). Role of the cholinergic muscarinic 2 receptor (CHRM2) gene in cognition. Mol. Psychiatry 8:10–11CrossRefPubMedGoogle Scholar
  13. Devlin B., Daniels M., and Roeder K., (1997). The heritability of IQ. Nature 388:468–471CrossRefPubMedGoogle Scholar
  14. Egan M. F., Goldberg T. E., Kolachana B. S., Callicott J. H., Mazzanti C. M., Straub R. E., Goldman D., Weinberger D. R. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 98:6917–6922CrossRefPubMedGoogle Scholar
  15. Fisher S. E., Marlow A. J., Lamb J., Maestrini E., Williams D. F., Richardson A. J., Weeks D. E., Stein J. F., and Monaco A. P. (1999). A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am. J. Hum. Genet. 64:146–156CrossRefPubMedGoogle Scholar
  16. Flint J. (1999). The genetic basis of cognition. Brain 122:2015–2031CrossRefPubMedGoogle Scholar
  17. Gayan J., Smith S. D., Cherny S. S., Cardon L. R., Fulker D. W., Brower A. M., Olson R. K., Pennington B. F., and DeFries J. S. (1999). Quantitative trait locus for specific language and reading deficits on chromosome 6. Am. J. Hum. Genet. 64:157–164CrossRefPubMedGoogle Scholar
  18. Green, P.H. (1990). Documentation for CRIMAP, version 2.4Google Scholar
  19. Grigorenko E. L., Wood F. B., Meyer M. S., Hart L. A., Speed W. C., Shuster A., and Pauls D. L. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosome 6p and 15. Am. J. Hum. Genet. 60:27–39PubMedGoogle Scholar
  20. Grigorenko E. L., Wood F. B., Meyer M. S., Hart L. A. and Pauls D. L. (2000). Chromosome 6p influences on different dyslexia-related cognitive process: further confirmation. Am. J. Hum. Genet. 66:715–723CrossRefPubMedGoogle Scholar
  21. Grigorenko E. L., Wood F. B., Golovyan L., Meyer M., Romano C., Hart L. A. And Pauls D. L. (2003). Continuing the search for dyslexia genes on 6p. Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 118 B:89–98CrossRefGoogle Scholar
  22. Hesselbrock M., Easton C., Bucholz K. K., Schuckit M., Hesselbrock V. (1999). A validity study of the SSAGA – A comparison with the SCAN. Addiction 94:1361-1370CrossRefPubMedGoogle Scholar
  23. Hill L., Chorney M. J., Lubinski D., Thompson L. A., and Plomin R. (2002) A quantitative trait locus not associated with cognitive ability in children: a failure to replicate. Psychol. Sci. 13:561CrossRefPubMedGoogle Scholar
  24. Hovatta I., Lichtermann D., Juvonen H., Suvisaari J., Terwilliger J. D., Arajarvi R., Kokko-Sahin M.-L., Ekelund J., Lonnqvist J., Peltonen L. (1998). Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p, and 22q in a population-based sampled Finnish family set. Mol. Psychiatry 3:452–457CrossRefPubMedGoogle Scholar
  25. Lander E., Kruglyak L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11:241–247CrossRefPubMedGoogle Scholar
  26. Lindholm E., Ekholm B., Balciuniene J., Johansson G., Castensson A., Koisti M., Nylander P. O., Pettersson U., Adolfsson R., Jazin E. (1999). Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. Am. J. Med. Genet. 88:369–377CrossRefPubMedGoogle Scholar
  27. Luciano, M., Wright, M. J., Duffy, D. L., Wainwright, M. A., Evans, D. M., Geffen, G. M., Montgomery, G. W., and Martin, N. G. (in press). Genome-wide scan of IQ finds significant linkage to a quantitative trait locus on 2q. Behav. Genet.Google Scholar
  28. Malhotra A. K., Kestler L. J., Mazzanti C., Bates J. A., Goldberg T., and Goldman D. (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am. J. Psychiatry 159:652–654CrossRefPubMedGoogle Scholar
  29. Maziade M., Roy M. A., Rouillard E., Bissonnette L., Fournier J. P., Roy A., Garneau Y., Montgrain N., Potvin A., Cliché, D., Dion C., Wallot H., Fournier A., Nicole L., Lavallee J. C., Merette C. (2001). A search for specific and common susceptibility loci for schizophrenia and bipolar disorder: a linkage study in 13 target chromosomes. Mol. Psychiatry 6:684–693CrossRefPubMedGoogle Scholar
  30. McGue M., Bouchard Jr. T. J., Iacono W. G., Lykken D..T. (1993). Behavioral genetics of cognitive ability: a life-span perspective. In: Plomin R., McClearn G. E. (eds). Nature, Nurture, and Psychology. American Psychological Association, Washington DC, pp. 59–76CrossRefGoogle Scholar
  31. McIntosh A. M., Harrison L. K., Forrester K., Lawrie S. M. and Johnstone E. C. (2005). Neuropsychological impairments in people with schizophrenia or bipolar disorder and their unaffected relatives. Br. J. Psychiatry 186:378–85CrossRefPubMedGoogle Scholar
  32. Paunio T., Tuulio-Henriksson A., Hiekkalinna T., Perola M., Varilo T., Partonen T., Cannon T.D., Lonnqvist J. and Peltonen L. (2004). Search for cognitive trait components of schizophrenia reveals a locus for verbal learning and memory on 4q and for visual working memory on 2q. Human Mol. Genet. 15:1693–1702CrossRefGoogle Scholar
  33. Payton A., Holland F., Diggle P., Rabbitt P., Horan M., Davidson Y., Gibbons L., Worthington J., Ollier W. E. R., and Pendleton N. (2003) Cathepsin D exon 2 polymorphism associated with general intelligence in a healthy older population. Mol. Psychiatry 8: 14-18CrossRefPubMedGoogle Scholar
  34. Petrill S. A. (2002). The case for general intelligence: a behavioral genetic perspective. In: Sternberg R. J. and Grigorenko E. L. (eds). The General Factor of Intelligence: How General is it?. Lawrence Erlbaum Associates, Mahwah NJ, pp. 281–298Google Scholar
  35. Plomin R., DeFries J. C., McClearn G. E. and McGuffin P. (2001a) Behavioral genetics. 4th edition. Worth, LondonGoogle Scholar
  36. Plomin R., Hill L., Craig I. W., McGuffin P., Purcell Sh., Sham P., Lubinski D., Thompson L. A., Fisher P. J., Turic D., and Owen M. J. (2001b). A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. Behav. Genet. 31:497–509CrossRefGoogle Scholar
  37. Plomin R. (2003). Genetics, genes, genomics, and g. Mol. Psychiatry 8:1–5CrossRefPubMedGoogle Scholar
  38. Posthuma, D., Luciano, M., De Geus, E. J. C., Wright, M. J., Slagboom, P. E., Montgomery, G. W., Boomsma, D. I., and Martin, N. G. (2005). A genome wide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am. J. Hum. Genet77:318–326Google Scholar
  39. Reich T. (1996). A genomic survey of alcohol dependence and related phenotypes: results from the Collaborative Study on the Genetics of Alcoholism (COGA). Alcohol. Clin. Exp. Res. 20:133A–137APubMedCrossRefGoogle Scholar
  40. Reich, T., Edenberg, H. J., Goate, A., Williams, J. T., Rice, J. P., Van Eerdewegh, P., Foroud, T., Hesselbrock, V., Schuckit, M. A., Bucholz, K., Porjesz, B., Li, T. K., Conneally, P. M., Nurnberger, J. I. Jr., Tischfield, J.A., Crowe, R. R., Cloninger, C. R., Wu, W., Shears, S., Carr, K., Crose, C., Willig, C., and Begleiter, H. (1998). Genome-wide search for genes affecting the risk for alcohol dependence. Am. J. Med. Genet81:207–215Google Scholar
  41. Schwab S. G., Hallmayer J., Albus M., Lerer B., Eckstein G. N., Borrmann M., Segman R. H., Hanses C., Freymann J., Yakir A., Trixler M., Falkai P., Rietschel M., Maier W., Wildenauer D. B. (2000). A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol. Psychiatry 5(6):638–649CrossRefPubMedGoogle Scholar
  42. Sham P. C., Purcell S., Cherny S. S. and Abecasis G. R. (2002). Powerful regression-based quantitative-trait linkage analysis of general pedigrees. Am. J. Hum. Genet. 71:238–253CrossRefPubMedGoogle Scholar
  43. Straub R. E., Jiang Y., MacLean C. J., Ma Y., Webb B. T., Myakishev M. V., Harris-Kerr C., Wormley B., Sadek H., Kadambi B., Cesare A. J., Gibberman A., Wang X., O’Neill F. A., Walsh D., and Kendler K. S. (2002). Genetic variation in the 6p22.3 Gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am. J. Hum. Genet. 71:337–348CrossRefPubMedGoogle Scholar
  44. Suarez B. K., Hampe C. L. and Van Eerdewegh P. (1994). Problems of replicating linkage claims in psychiatry. In: Gershon E. S. and Cloninger C. R. (eds). Genetic Approaches to Mental Disorders. American Psychiatric Press, Washington, DCGoogle Scholar
  45. Wainwright, M. A., Wright, M. J., Luciano, M., Montgomery, G. W., Geffen, G. M., and Martin, N. G. (in press). A linkage study of academic skills defined by the Queensland Core Skills Test. Behav. Genet.Google Scholar
  46. Wechsler D. (1981). Wechsler Adult Intelligence Scale – Revised. The Psychological Corporation, New YorkGoogle Scholar
  47. Wechsler D. (1997). WAIS-III Wechsler Adult Intelligence Scale. Psychological Corporation, San AntonioGoogle Scholar
  48. Wiltshire S., Cardon L. R. and McCarthy M. I. (2002). Evaluating the results of genomewide linkage scans of complex traits by locus counting. Am. J. Human Genet. 71:1175–1182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Danielle M. Dick
    • 1
    • 8
  • Fazil Aliev
    • 1
    • 2
  • Laura Bierut
    • 1
  • Alison Goate
    • 1
  • John Rice
    • 1
  • Anthony Hinrichs
    • 1
  • Sarah Bertelsen
    • 1
  • Jen C. Wang
    • 1
  • Gerald Dunn
    • 1
  • Sam Kuperman
    • 3
  • Marc Schuckit
    • 4
  • John NurnbergerJr.
    • 5
  • Bernice Porjesz
    • 6
  • Henri Beglieter
    • 6
  • John Kramer
    • 3
  • Victor Hesselbrock
    • 7
  1. 1.Department of PsychiatryWashington University in St. LouisSt. LouisUSA
  2. 2.Ankara UniversityAnkaraTurkey
  3. 3.University of IowaIowa CityUSA
  4. 4.University of California at San DiegoSan DiegoUSA
  5. 5.Indiana UniversityIndianapolisUSA
  6. 6.SUNY Health Science Center at BrooklynBrooklynUSA
  7. 7.University of Connecticut School of MedicineFarmingtonUSA
  8. 8.Department of PsychiatryWashington University in St. LouisSt. LouisUSA

Personalised recommendations