Behavior Genetics

, Volume 35, Issue 6, pp 765–780

Application of Bayesian Inference using Gibbs Sampling to Item-Response Theory Modeling of Multi-Symptom Genetic Data

  • Lindon Eaves
  • Alaattin Erkanli
  • Judy Silberg
  • Adrian Angold
  • Hermine H. Maes
  • Debra Foley
Article

Abstract

Several “genetic” item-response theory (IRT) models are fitted to the responses of 1086 adolescent female twins to the 33 multi-category item Mood and Feeling Questionnaire relating to depressive symptomatology in adolescence. A Markov-chain Monte Carlo (MCMC) algorithm is used within a Bayesian framework for inference using Gibbs sampling, implemented in the program WinBUGS 1.4. The final model incorporated separate genetic and non-shared environmental traits (“A and E”) and item-specific genetic effects. Simpler models gave markedly poorer fit to the observations judged by the deviance information criterion (DIC). The common genetic factor showed major loadings on melancholic items, while the environmental factor loaded most highly on items relating to self-deprecation. The MCMC approach provides a convenient and flexible alternative to Maximum Likelihood for estimating the parameters of IRT models for relatively large numbers of items in a genetic context. Additional benefits of the IRT approach are discussed including the estimation of latent trait scores, including genetic factor scores, and their sampling errors.

Keywords

Bayesian inference depression genetic Gibbs sampling item-response theory Markov Chain Monte Carlo multivariate twins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. 1974A new look at statistical model identificationIEEE Trans. Autonomic Control19716723Google Scholar
  2. Angold, A.,  et al. 1995The development of a short questionnaire for use in epidemiological studies of depression in children and adolescentsInt. J. Meth. Psychiatry Res.5112Google Scholar
  3. Besag, J. E. (2000). Markov Chain Monte Carlo for Statistical Inference. Working Paper # 9. WA: Center for Statistics and Social Sciences, University of WashingtonGoogle Scholar
  4. Boomsma, D. I., Molenaar, P. C. M., Orlebeke, J. F. 1990Estimation of individual genetic and environmental factor scoresGenet. Epidemiol.78391CrossRefPubMedGoogle Scholar
  5. Brooks, S. P. 1998Markov Chain Monte Carlo and its applicationsThe Statistician4769100Google Scholar
  6. Creutz, M. 1979Confinement and the critical dimensionality of space-timePhys. Rev. Lett.43553556Google Scholar
  7. Do, K. A., Broom, B. M., Kuhnert, P., Duffy, D. L., Todorov, A. A., Treloar, S. A., Martin, N. G. 2000Genetic analysis of the age at menopause by using estimating equations and Bayesian random effects modelsStatist. Med.1912171235CrossRefGoogle Scholar
  8. Eaves, L. J., Martin, N. G., Heath, A. C., Kendler, K. S. 1987Testing genetic models for multiple symptoms: an application to the genetic analysis of liability to depressionBehav. Genet.17331341CrossRefPubMedGoogle Scholar
  9. Eaves, L. J., Silberg, J. L., Meyer, J. M., Maes, H. H., Simonoff, E., Pickles, A., Rutter, M., Neale, M. C., Reynolds, C., Erickson, M., Heath, A., Loeber, R., Truett, K. R., Hewitt, J. K. 1997Genetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia twin study of adolescent behavioral developmentJ. Child Psychol. Psychiatry38965980PubMedGoogle Scholar
  10. Eaves, L. J., Erkanli, A. 2003Markov Chain Monte Carlo approaches to analysis of genetic and environmental components of human developmental change and GxE InteractionBehav. Genet.33279299PubMedGoogle Scholar
  11. Eaves, L. J., Silberg, J. L., Erkanli, A. 2003Resolving multiple epigenetic pathways to adolescent depressionJ. Child Psychol. Psychiatry4410061014CrossRefPubMedGoogle Scholar
  12. Fraser, C. (1988) NOHARM: a computer program for fitting both unidimensional and multidimensional normal ogive models of latent trait theory. NSW: University of New EnglandGoogle Scholar
  13. Gelfand, A. E., Smith, A. M. F. 1990Sampling based approaches to calculating marginal densitiesJ. Am. Statist. Assoc.85398409Google Scholar
  14. Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. Institute of Electrical and ElectronicsGoogle Scholar
  15. Gilks, W. R., Richardson, S., Spielgelhalter, D. 1996Markov Chain Monte Carlo in PracticeChapman and HallLondonGoogle Scholar
  16. Hewitt, J. K., Silberg, J. L., Rutter, M. L., Simonoff, E., Meyer, J. M., Maes, H. H., Pickles, A. R., Neale, M. C., Loeber, R., Erickson, M. T., Kendler, K. S., Heath, A. C., Truett, K. R., Reynolds, C. A., Eaves, L. J. 1997Genetics and developmental psychopathology: 1. Phenotypic assessment in The Virginia Twin Study of Adolescent Behavioral DevelopmentJ. Child Psychol. Psychiatry38943963PubMedGoogle Scholar
  17. Jinks, J. L., Fulker, D. W. 1970Comparison of the biometrical genetical, MAVA and classical approaches to the analysis of human behaviorPsychol. Bull.73311349PubMedGoogle Scholar
  18. Lord, F. M., Novick, M. R. 1968Statistical Theories of Mental Test ScoresAddison-WesleyNew YorkGoogle Scholar
  19. Martin, N. G., Eaves, L. J. 1977The genetical analysis of covariance structureHeredity387995PubMedGoogle Scholar
  20. Nelder, J. A., and McCullagh, P. (1989) Generalized Linear Models (2nd Ed.), Chapman and Hall/CRC Press.Google Scholar
  21. Muthén, L. K., Muthén, B. 2001Mplus User’s GuideMuthén & MuthénLos Angeles, CAGoogle Scholar
  22. Neale, M. C., Cardon, L. 1992Methodology for Genetic Studies of Twins and FamiliesKluwer Academic PublishersDodrechtGoogle Scholar
  23. Ripley, B. D. 1979Algorithm AS 137: simulating spatial patterns: dependent samples from a multivariate densityAppl. Statist.28109112Google Scholar
  24. Simonoff, E., Pickles, A. R., Meyer, J. M., Silberg, J. L., Maes, H. H., Loeber, R., Rutter, M. L., Hewitt, J. K., Eaves, L. J. 1997The Virginia Twin Study of Adolescent Behavioral Development: influences of age, gender and impairment on rates of disorderArch. Gen. Psychiatry54801808PubMedGoogle Scholar
  25. Spielgelhalter, D. J., Thomas, A., Best, N. G. 2003WinBUGS version 1.4 User ManualMRC Biostatistics UnitCambridgeGoogle Scholar
  26. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., Linde, A. 2001Bayesian measures of model complexity and fit Technical ReportMedical Research Council Biostatistics UnitCambridge, UKGoogle Scholar
  27. Thissen, D. 1995Multlog 6.3: A computer program for multiple, categorical item analysis and test scoring using item response theoryScientific Software, IncChicagoGoogle Scholar
  28. Tierney, L. 1994Markov chains for exploring posterior distributions (with Discussion)Ann. Statist.2217011762Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Lindon Eaves
    • 1
  • Alaattin Erkanli
    • 2
    • 3
  • Judy Silberg
    • 1
  • Adrian Angold
    • 3
  • Hermine H. Maes
    • 1
  • Debra Foley
    • 1
  1. 1.Virginia Institute for Psychiatric and Behavioral Genetics, Department of Human GeneticsVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Biostatistics and BioinformaticsDuke University Medical CenterDurhamUSA
  3. 3.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA

Personalised recommendations