Behavior Genetics

, Volume 35, Issue 5, pp 603–613 | Cite as

Effect of Robertsonian Translocations on the Motor Activity Rhythm in the House Mouse

  • Maria Assumpció Sans-Fuentes
  • María José López-Fuster
  • Jacint Ventura
  • Antoni Díez-Noguera
  • Trinitat Cambras

Here we studied the circadian rhythm of motor activity in two groups of wild house mice from the chromosomal polymorphic zone of Barcelona, which differed in diploid number (2n): standard (2n = 40), with all acrocentric chromosomes, and Robertsonian (2n = 29–32), with several Robertsonian translocations. Motor activity under three lighting conditions, light-dark cycle, constant darkness, and constant light, was recorded for each mouse. The motor activity rhythm was examined by Fourier analysis and the daily power spectra were obtained. On the basis of the mean power spectrum of each animal and under each lighting condition, stepwise discriminant analyses were performed to classify the two chromosomal groups. This method allowed the correct classification of a large number of animals, the rhythms of about 2–2.6 hour periods being the most significant, with higher values in Robertsonian than in standard mice. Our results indicate that the daily motor activity pattern differs between the two chromosomal groups and its analysis may have a valuable interest for behavioral investigations on Robertsonian polymorphic zones of this species.


Behavior circadian rhythm house mouse motor activity Robertsonian (Rb) translocation ultradian rhythm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, D., Harry, D., Johnson, R. E., Kupprat, I. 1973Oscillatioin oxygen consumption of man at restJ. Appl. Physiol.34467470PubMedGoogle Scholar
  2. Bauchau, V. 1990Phylogenetic analysis of the distribution of chromosomal races of Mus musculus domesticus Rutty in EuropeBiol. J. Linn. Soc.41171192Google Scholar
  3. Bidau, C. J., Giménez, M. D., Palmer, C. L., Searle, J. B. 2001The effects of Robertsonian fusions on chiasma frequency and distribution in the house mouse (Mus musculus domesticus) from a hybrid zone in northern ScotlandHeredity87305313CrossRefPubMedGoogle Scholar
  4. Bradenberger, G., Simon, C., Follenius, M. 1987Ultradian endocrine rhythms: a multioscillatory systemJ. Interdispl. Cycle Res.18307315Google Scholar
  5. Cambras, T., Díez-Noguera, A. 1988Generational variability in the patterns of motor activity circadian rhythm in the ratsRev. Esp. Fisiol.44243246PubMedGoogle Scholar
  6. Cambras, T., Díez-Noguera, A., Ribot, M. 1988Classification of familiar motor activity patterns using a cluster method and spectral analysisJ. Interdiscipl. Cycle Res.191722Google Scholar
  7. Canal-Corretger, M. M., Vilaplana, J., Cambras, T., Diez-Noguera, A. 2001Effect of light on the development of the circadian rhythm of motor activity in the mouseChronobiol. Int.18683696CrossRefPubMedGoogle Scholar
  8. Capanna, E., Corti, M., Mainardi, D., Parmigiani, S., Brain, P. F. 1984Karyotype and intermale aggression in wild house mice: ecology and speciationBehav. Genet.14195208CrossRefPubMedGoogle Scholar
  9. Capanna, E., Corti, M., Nascetti, G., Bullini, L. 1985Pre- and post-mating isolating mechanisms in the speciation of the European long-tailed house mouse Mus musculus domesticusActa Zool. Fenn.170115120Google Scholar
  10. Castiglia, R., Capanna, E. 2002Chiasma repatterning across a chromosomal hybrid zone between chromosomal races of Mus musculus domesticusGenetica1143540CrossRefPubMedGoogle Scholar
  11. Challet, E., Pitrosky, B., Sicard, B., Malan, A., Pévet, P. 2002Circadian organization in a diurnal rodent, Arvicantis ansorgei Thomas 1910: chronotypes, responses to constant lighting conditions, and photoperiodic changesJ. Biol. Rhythms175264CrossRefPubMedGoogle Scholar
  12. Choo, K. H. A. 1998Why is the centromere so cold? Genome Res.88182PubMedGoogle Scholar
  13. Committee on Standardized Genetic Nomenclature for Mice1972Standard karyotype of the mouse Mus musculusJ. Hered.636972Google Scholar
  14. Corti, M., Ciabatti, C. M., Capanna, E. 1990Parapatric hybridation in the chromosomal speciation of the house mouseBiol. J. Linn. Soc.41203214Google Scholar
  15. Corti, M., Parmigiani, S., Mainardi, D., Capana, E., Brain, F. 1989The role of intermale aggression in speciation processes in chromosomal races of house miceBrain, P. F.Mainardi, D.Parmigiani, S. eds. House mouse aggressionHarwood Academic PublishersLondon4967Google Scholar
  16. Corti, M., Rohlf, F. J. 2001Chromosomal speciation and phenotypic evolution in the house mouseBiol. J. Linn. Soc.7399112CrossRefGoogle Scholar
  17. Davis, F. C., Menaker, M. 1981Development of the mouse circadian pacemaker: independence from environmental cyclesJ. Comp. Physiol. A143527539CrossRefGoogle Scholar
  18. Davisson, M. T., Akeson, E. C. 1993Recombination suppression by heterozygous Robertsonian chromosomes in the mouseGenetics133649667PubMedGoogle Scholar
  19. Díez-Noguera, A., Cambras, T., Ribot, M., Torralba, A. 1989Hereditary nature of the pattern of the motor activity circadian rhythm in micePhysiol. Behav.45307311CrossRefPubMedGoogle Scholar
  20. Dumas, D., Britton-Davidian, J. 2002Chromosomal rearrangements and evolution of recombination: comparison of chiasma distribution patterns in standard and Robertsonian populations of the house mouseGenetics16213551366PubMedGoogle Scholar
  21. Dunlap, J. C. 1999Molecular bases for circadian clocksCell96271290CrossRefPubMedGoogle Scholar
  22. Dyban, A. P., Baranov, S. 1987Cytogenetics of Mammalian Embryonic DevelopmentClarendon PressOxfordGoogle Scholar
  23. Eppig, J. T., Eicher, E. M. 1988Analysis of recombination in the centromere region of mouse chromosome 7 using ovarian teratoma and backcross methodsJ. Hered.79425429PubMedGoogle Scholar
  24. Ford, C. E. 1966The use of chromosomes markersMicklem, H. S.Loutit, J. F. eds. Tissue Grafting and RadiationAcademic PressNew York197206Google Scholar
  25. Ganem, G., Searle, J. B. 1996aBehavioural discrimination among chromosomal races of the house mouse (Mus musculus domesticus)J. Evolution. Biol.9817830CrossRefGoogle Scholar
  26. Ganem, G., Searle, J. B. 1996bCorticosterone and interchromosomal race discrimination in the house mouseHorm. Behav.306973CrossRefGoogle Scholar
  27. Gérard, D., Bauchau, V., Smets, S. 1994Reduced trapability in wild mice, Mus musculus domesticus, heterozygous for Robertsonian translocationsAnim. Behav.47877883CrossRefGoogle Scholar
  28. Gündüz, I., López-Fuster, M. J., Ventura, J., Searle, J. B. 2001Clinal analysis of a chromosomal hybrid zone in the house mouseGenet.Res.774151CrossRefPubMedGoogle Scholar
  29. Guo, M., Wu, C. F., Liu, W., Yang, J. Y., Chen, D. 2004Sex difference in psychological behavior changes induced by long-term social isolation in miceProg. Neuropsychopharmacol. Biol. Psychiatry28115121CrossRefPubMedGoogle Scholar
  30. Hare, J. F. 1992Colony member discrimination by juvenile Columbian ground squirrels (Spermophilus columbianus)Ethology92301315Google Scholar
  31. Hauffe, H. C., Searle, J. B. 1998Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from northern ItalyGenetics15011431154PubMedGoogle Scholar
  32. Hausser, J., Fedyk, S., Fredga, K., Searle, J. B., Volobouev, V., Wójcik, J. M., Zima, J. 1994Definition and nomenclature of the chromosome races of Sorex araneusFolia Zool.4319Google Scholar
  33. Heslop-Harrison, J. S., Benet, M. D. 1990Nuclear architecture in plantsTrends. Genet.6401405CrossRefPubMedGoogle Scholar
  34. Hofstetter, J. R, Trofatter, J. A., Kernek, K. L., Nurnberger, J. I., Mayeda, A. R. 2003New quantitative trait loci for the genetic variance in circadian period of locomotor activity between inbred strains of miceJ. Biol. Rhythms18450462CrossRefPubMedGoogle Scholar
  35. Honma, S., Kawamoto, T., Takagi, Y., Fujimoto, K., Sato, F., Noshiro, M., Kato, Y., Honma, K. 2002Dec1 and Dec2 are regulators of the mammalian molecular clockNature24841844CrossRefGoogle Scholar
  36. John, B. 1990MeiosisCambridge University PressCambridgeGoogle Scholar
  37. King, D. P., Takahashi, J. S. 2000Molecular genetics of circadian rhythms in mammalsAnnu. Rev. Neurosci.23713742CrossRefPubMedGoogle Scholar
  38. King, D. P., Vitaterna, M. H., Chang, A. M., Dove, W. F., Pinto, L. H., Turek, F. W., Takahashi, J. S. 1997The mouse clock mutation behaves as an antimorph and maps within the W19H delection, distal of KitGenetics14610491060PubMedGoogle Scholar
  39. King, M. 1995Species Evolution.The Role of chromosome changeCambridge University PressCambridgeGoogle Scholar
  40. Klante, G., Secci, K., Masson-Pévet, M., Vivien-Roels, B., Steinlechner, S., Wollnik, F. 1999Interstrain differences in activity pattern, pineal function, and SCN melatonin receptor density of ratsAm. J. Physiol. Regul. Integr. Comp. Physiol.276R1078R1086Google Scholar
  41. Klein, D. C., Moore, R. Y., Reppert, S. M. 1991Suprachiasmatic Nucleus: The Mind’s ClockOxford University PressNew YorkGoogle Scholar
  42. Krushinskii, L. V., Dyban, A. P., Bananov, V. S., Poletaeva, I. I., Romanova, L. G. 1986Behavior of mice with Robertsonian translocations of chromosomes (Povedenie myshei s robertsonovskimi translokatsiiami khromosom)Genetika22434441PubMedGoogle Scholar
  43. Krushinskii, L. V., Poletaeva, I. I., Romanova, L. G., Dyban, A. P., Bananov, V. S., Popova, N. V. 1978The perspectives of physiological and genetic investigation of extrapolation ability in miceZh. Vyssh. Nerv. Deiat.28903912PubMedGoogle Scholar
  44. Lane, P. W., Eicher, E. M. 1985Location of plucked (pk) on chromosome 18 of the mouseJ. Hered.76476477PubMedGoogle Scholar
  45. Leitinger, B., Poletaeva, I. I., Wolfer, D. P., Lipp, H. P. 1994Swimming navigation, open-field activity, and extrapolation behavior of two inbred mouse strains with Robertsonian translocations of chromosomes 8 and 17Behav. Genet.24273284CrossRefPubMedGoogle Scholar
  46. Lenington, S. 1983Social preferences for partners carring ‘good genes’ in wild house mouseAnim. Behav.31325333Google Scholar
  47. Lloyd, D., Stupfel, M. 1991The occurrence and functions of ultradian rhythmsBiol. Rev.66275299PubMedGoogle Scholar
  48. Lowrey, P. L., Shimomura, K., Antoch, M. P., Yamazaki, S., Zemenides, P. D., Ralph, M. R., Menaker, M., Takahashi, J. S. 2000Positional syntenic cloning and functional characterization of the mammalian circadian mutation tauScience288483491Google Scholar
  49. Lowrey, P. L., Takahashi, J. S. 2004Mammalian circadian biology: elucidating genome-wide levels of temporal organizationAnnu. Rev. Genomics Hum. Genet.5407441CrossRefPubMedGoogle Scholar
  50. Mackintosh, J. H. 1981Behaviour of the house mouseSymp. Zool. Soc. Lond.47337365Google Scholar
  51. Mainardi, D., Parmigiani, S. M, Jones, S. E., Brain, P. F., Capanna, E., Corti, M. 1986Social conflict and chromosomal races of feral house mice: an assessment of combining laboratory and field investigationsAccad. Naz. Lincei Quad25111139Google Scholar
  52. Mandahl, N. 1992Methods in solid tumor cytogeneticsRooney, D. E.Czepulkowski, B. H. eds. Human Cytogenetics, a practical approachIRL PressLondon155187Google Scholar
  53. Mayr, E. 1963Animal Species and EvolutionBelknap Press of Harvard University PressCambridgeGoogle Scholar
  54. Muñoz-Muñoz, F., Sans-Fuentes, M. A., López-Fuster, M. J., Ventura, J. 2003Non-metric morphological divergence in the western house mouse, Mus musculus domesticus, from Barcelona chromosomal hybrid zoneBiol. J. Linn. Soc.80313322CrossRefGoogle Scholar
  55. Nachman, M. W., Searle, J. B. 1995Why is the house mouse karyotype so variable?Trends Ecol. Evol.10397402CrossRefGoogle Scholar
  56. Nakamura, W., Honma, S., Shirakawa, T., Honma, K. 2002Clock mutation lengthens the circadian period without damping rhythms in individual SCN neuronsNat. Neurosci.5399400PubMedGoogle Scholar
  57. Park, P. C., De Boni, U. 1998A specific conformation of the territory of chromosome 17 localities ERBB-2 sequences to DNase-hypersensitive domain at the nuclear peripheryChromosoma1078795CrossRefPubMedGoogle Scholar
  58. Poirel, C. 1968Variations temporelles du comportement d’exploration chez la sourisCr. Séanc. Biol.16223122316Google Scholar
  59. Qumsiyeh, M. B. 1999Structure and function of the nucleus: anatomy and physiology of chromatinCell Mol. Life Sci.5511291140CrossRefPubMedGoogle Scholar
  60. Ressouche, L., Ganem, G., Derothe, J. M., Searle, J. B., Renaud, F., Moulia, C. 1998Host chromosmal evolution and parasites of the house mouse Mus musculus domesticus in Scotland. ZSäugetierkunde635257Google Scholar
  61. Rice, W. R. 1989Analyzing tables of statistical testsEvolution43223225Google Scholar
  62. Roeder, G. S. 1990Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregationTrends Genet.6385389CrossRefPubMedGoogle Scholar
  63. Roussel, B. 1986Sleep-induced ultradian internal temperature rhythms in ratJ. Interdiscipl. Cycle Res.17153Google Scholar
  64. Rusak, B., Zucker, I. 1979Neural regulation of circadian rhythmsPhysiol. Rev.59449526PubMedGoogle Scholar
  65. Schröder, J. H., Otten, I. S. 1985Increase in aggressiveness of male mice carrying a reciprocal translocation, T(10,13), in the heterozygous stateBehav. Genet.154351CrossRefPubMedGoogle Scholar
  66. Schwartz, W. J., Zimmerman, P. 1990Circadian timekeeping in BALB/c and 57BL/6 inbred mouse strainsJ. Neurosci.1036853694PubMedGoogle Scholar
  67. Shimomura, K., Low-Zeddies, S. S., King, D. P., Steeves, T. D. L., Whiteley, A., Kushla, J., Zemenides, P. D., Lin, A., Vitaterna, M. H., Churchill, G. A., Takahashi, J. S. 2001Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in miceGenome Res.11959980CrossRefPubMedGoogle Scholar
  68. Sokolove, P. G., Bushell, W. N. 1978The chi square periodogram: its utility for analysis of circadian rhythmsJ. Theor. Biol.72131160CrossRefPubMedGoogle Scholar
  69. Stupfel, M., Gourlet, V., Perramon, A., Merat, P., Putet, G., Court, L. 1995Comparison of ultradian and circadian oscillations of carbon dioxide production by various endothermsAm. J. Physiol.268R253R265PubMedGoogle Scholar
  70. Suzuki, T., Ishikawa, A., Nishimura, M., Yoshimura, T., Namikawa, T., Ebihara, S. 2000Mapping quantitative trait loci for circadian behavioral rhythms in SMXA recombinant inbred strainsBehav. Genet.30447453CrossRefPubMedGoogle Scholar
  71. Suzuki, T., Ishikawa, A., Yoshimura, T., Namikawa, T., Abe, H., Honma, S., Honma, K., Ebihara, S. 2001Quantitative trait locus analysis of abnormal circadian period in CS miceMamm. Genome.12272277CrossRefPubMedGoogle Scholar
  72. Vitaterna, M. H., King, D. P., Chang, A. M., Kornhauser, J. M., Lowrey, P. L., McDonal, J. D., Dove, W. F., Pinto, L. H., Turek, F. W., Takahashi, J. S. 1994Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behaviorScience264719725PubMedGoogle Scholar
  73. White, M. J. D. 1975Chromosome repatterning-regularities and restrictionsGenetics796372Google Scholar
  74. Winking, H., Dulic, B., Bulfield, G. 1988Robertsonian karyotype variation in the Europe house mouse Mus musculusZ. Säugetierkunde53148161Google Scholar
  75. Yamamoto, M., Miklos, G. L. G. 1978Genetic studies on heterochromatin in Drosophila melanogaster and their implications for the functions of satellite DNAChromosoma667198CrossRefPubMedGoogle Scholar
  76. Zickler, D., Kleckner, N. 1998Leptotene-zygotene transition of meiosisAnnu. Rev. Genet.32619697CrossRefPubMedGoogle Scholar
  77. Zickler, D., Kleckner, N. 1999Meiotic chromosomes: integrationg structure and functionAnnu. Rev. Genet.33603754CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Maria Assumpció Sans-Fuentes
    • 1
    • 3
  • María José López-Fuster
    • 1
  • Jacint Ventura
    • 2
  • Antoni Díez-Noguera
    • 3
  • Trinitat Cambras
    • 3
  1. 1.Departament de Biologia Animal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Facultat de CiènciesUniversitat Autòmoma de BarcelonaBellaterraSpain
  3. 3.Departament de Fisiologia, Facultat de FarmaciaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations