Behavior Genetics

, Volume 35, Issue 5, pp 675–692 | Cite as

Assessing Reliability, Heritability and General Cognitive Ability in a Battery of Cognitive Tasks for Laboratory Mice

  • Michael J. Galsworthy
  • Jose L. Paya-Cano
  • Lin Liu
  • Santiago Monleón
  • Gregory Gregoryan
  • Cathy Fernandes
  • Leonard C. Schalkwyk
  • Robert Plomin
Article

This report includes the first sibling study of mouse behavior, and presents evidence for a heritable general cognitive ability (g) factor influencing cognitive batteries. Data from a population of male and female outbred mice (n = 84), and a replication study of male sibling pairs (n = 167) are reported. Arenas employed were the T-maze, the Morris water maze, the puzzle box, the Hebb–Williams maze, object exploration, a water plus-maze, and a second food-puzzle arena. The results show a factor structure consistent with the presence of g in mice. Employing one score per arena, this factor accounts for 41% of the variance in the first study (or 36% after sex regression) and 23% in the second, where this factor also showed sibling correlations of 0.17–0.21, which translates into an upper-limit heritability estimate of around 40%. Reliabilities of many tasks are low and consequently set an even lower ceiling for inter-arena or sibling correlations. Nevertheless, the factor structure is seen to remain fairly robust across permutations of the battery composition and the current findings fit well with other recent studies.

Keywords

Factor analysis g general cognitive ability heritability HS mice individual differences siblings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B. 1993Evidence from the rat for a general factor that underlies cognitive performance and that relates to brain size: intelligence?Neurosci. Lett.15398102CrossRefPubMedGoogle Scholar
  2. Ashe, K. H. 2001Learning and memory in transgenic mice modeling Alzheimer’s diseaseLearning Memory8301308CrossRefPubMedGoogle Scholar
  3. Bagg, H. J. 1920Individual differences and family resemblances in animal behaviorArch. Psychol.43158Google Scholar
  4. Blizard, D. A., Klein, L. C., Cohen, R., McClearn, G. E. 2003A novel mouse-friendly cognitive task suitable for use in aging studiesBehav. Genet.33181189CrossRefPubMedGoogle Scholar
  5. Bornstein, M. H., Sigman, M. D. 1986Continuity in mental-development from infancyChild Develop.57251274PubMedGoogle Scholar
  6. Brody, N. 1992Intelligence2Academic PressNew York, NYGoogle Scholar
  7. Brown, R. E., Stanford, L., Schellinck, H. 2000Mouse IQ: developing standardized behavioral tests for knockout and inbred miceILAR J.41163174PubMedGoogle Scholar
  8. Carroll, J. B. 1993Human Cognitive AbilitiesCambridge University PressNew YorkGoogle Scholar
  9. Cohen, J. 1988Statistical Power for the Behavioral SciencesErlbaumHillsdale, NJGoogle Scholar
  10. Crabbe, J. C., Wahlsten, D., Dudeck, B. C. 1999Genetics of mouse behavior: interactions with laboratory environmentScience28416702CrossRefPubMedGoogle Scholar
  11. Creel, D. 1980Inappropriate use of albino animals as models in researchPharmacol., Biochem. Behav.12969977Google Scholar
  12. Crinella, F. M., Yu, J. 1995Brain mechanisms in problem solving and intelligence: a replication and extensionIntelligence21225246CrossRefGoogle Scholar
  13. Deary, I. J. 2000Looking Down on Human Intelligence: From Psychometrics to the BrainOxford University PressNew YorkGoogle Scholar
  14. D’Hooge, R., Deyn, P. P. 2001Applications of the Morris water maze in the study of learning and memoryBrain Res. Rev.366090CrossRefPubMedGoogle Scholar
  15. Galsworthy, M. J., Paya-Cano, J. L., Monleón, S., Plomin, R. 2002Evidence for general cognitive ability (g) in heterogeneous stock (HS) mice and an analysis of potential confoundsGenes, Brain Behav.18895Google Scholar
  16. Galsworthy, M. J. (2003). A psychometric and quantitative genetic study of cognitive task performance in a heterogeneous stock (HS) population of Mus musculus. Unpublished Ph.D. thesis. University of London, UK.Google Scholar
  17. Galsworthy, M. J., Amrein, I., Kuptsov, P., Polataeva, I., Zinn, P., Rau, A., Vyssotski, A., Lipp, H.-P. 2005A comparison of wild-caught wood mice and bank voles in the Intellicage: assessing exploration, daily activity patterns and place learning paradigmsBehav. Brain Res.157211217CrossRefPubMedGoogle Scholar
  18. Gerlai, R. 1998A new continuous alternation task in T-maze detects hippocampal dysfunction in mice. A strain comparison and lesion studyBehav. Brain Res.9591101CrossRefPubMedGoogle Scholar
  19. Gustaffson, J.-E. 1984A unifying model for the structure of intellectual abilitiesIntelligence8179203CrossRefGoogle Scholar
  20. Hebb, D. O., Williams, K. 1946A method of rating animal intelligenceJ. Genet. Psychol.345965Google Scholar
  21. Lassalle, J.-M., Le Pape, G. 1981Differential effects of the albino gene on behavior according to task, level of inbreeding, and genetic backgroundJ. Comp. Physiol. Psychol.95655662PubMedGoogle Scholar
  22. Lipp, H.-P., Wolfer, D. P. 1998Genetically modified mice and cognitionCurr. Opin. Neurobiol.8272280CrossRefPubMedGoogle Scholar
  23. Locurto, C., Scanlon, C. 1998Individual differences and a spatial learning factor in two strains of mice (Mus musculus)J. Comp. Psychol.112344352CrossRefGoogle Scholar
  24. Locurto, C., Fortin, E., Sullivan, R. 2003The structure of individual differences in Heterogeneous Stock mice across problem types and motivational systemsGenes, Brain Behav.24055Google Scholar
  25. Mackintosh, N. J. 1998IQ and Human IntelligenceOxford University PressOxfordGoogle Scholar
  26. Matzel, L. D., Han, Y. R., Grossman, H., Karnik, M. S., Patel, D., Scott, N., Specht, S. M., Gandhi, C. C. 2003Individual differences in the expression of a `general’ learning ability in miceJ. Neurosci.2364236433PubMedGoogle Scholar
  27. McClearn, G. E., Wilson, J. R., Meredith, W. 1970

    The use of isogenic and heterogenic mouse stocks in behavioral research

    Lindzey, G.Thiessen, D. eds. Contributions to Behavior Genetic Analysis: The Mouse as a PrototypeAppleton Century CroftsNew York322
    Google Scholar
  28. Meunier, M., Saint-Marc, M., Destrade, C. 1986The Hebb–Williams test to assess recovery of learning after limbic lesions in micePhysiol. Behav.37909913PubMedGoogle Scholar
  29. Misslin, R., Ropartz, P. 1981Responses in mice to a novel objectBehaviour78169177Google Scholar
  30. Morris, R. G. M. 1984Developments of a water-maze procedure for studying spatial learning in the ratJ. Neurosci. Meth.114660Google Scholar
  31. Plomin, R. 1999Genetic research on general cognitive ability as a model for mild mental retardationInt. Rev. Psychiat.113436CrossRefGoogle Scholar
  32. Plomin, R., DeFries, J. C., McClearn, G. E., McGuffin, P. 2001Behavioral Genetics4Worth PublishersNew YorkGoogle Scholar
  33. Plomin, R. 2001The genetics of g in human and mouseNat. Rev. Neurosci.2136141CrossRefPubMedGoogle Scholar
  34. Rabinovitch, M. S., Rosvold, H. E. 1951A closed-field intelligence test for ratsCan. J. Psychol.5122128PubMedGoogle Scholar
  35. Rencher, A. C. 1995Methods of Multivariate AnalysisJohn Wiley & SonsNew YorkGoogle Scholar
  36. Spearman, C. 1904‘General intelligence’ objectively determined and measuredAm. J. Psychol.15201293Google Scholar
  37. Thompson, R., Huestis, P. W., Bjelajac, V. M., Crinella, F. M., Yu, J. 1989Working memory in young rats with lesions to the “general learning system”Psychobiology17285292Google Scholar
  38. Thompson, R., Huestis, P. W., Shea, C. N., Crinella, F. M., Yu, J. 1990Brain structures important for solving a sawdust-digging problem in the ratPhysiol. Behav.48107111CrossRefPubMedGoogle Scholar
  39. Gaalen, M. M., Steckler, T. 2000Behavioural analysis of four mouse strains in an anxiety test batteryBehav. Brain Res.11595106CrossRefPubMedGoogle Scholar
  40. Wahlsten, D. 2001Standardizing tests of mouse behavior: reasons, recommendations, and realityPhysiol. Behav.73695704CrossRefPubMedGoogle Scholar
  41. Wahlsten, D., Rustay, N. R., Metten, P., Crabbe, J. C. 2003In search of a better mouse testTrends Neurosci.26132136CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Michael J. Galsworthy
    • 1
    • 2
  • Jose L. Paya-Cano
    • 1
  • Lin Liu
    • 1
  • Santiago Monleón
    • 3
  • Gregory Gregoryan
    • 4
  • Cathy Fernandes
    • 1
  • Leonard C. Schalkwyk
    • 1
  • Robert Plomin
    • 1
  1. 1.Social, Genetic and Developmental Psychiatry Centre, Institute of PsychiatryKing’s College LondonLondonUK
  2. 2.Division of Neuroanatomy and Behavior, Institute of AnatomyUniversity of ZurichZurichSwitzerland
  3. 3.Área de Psicobiología, Facultad de PsicologíaUniversitat de ValenciaSpain
  4. 4.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations