Advertisement

Behavior Genetics

, Volume 35, Issue 3, pp 323–332 | Cite as

Use of A Standard Strain for External Calibration in Behavioral Phenotyping

  • David A. Blizard
  • Yumiko Wada
  • Yasuhiro Onuki
  • Katsunori Kato
  • Toshiyuki Mori
  • Tohru Taniuchi
  • Hiroshi Hosokawa
  • Takayuki Otobe
  • Aki Takahashi
  • Hayase Shisa
  • Hiroshi Hiai
  • Junshiro Makino
Article

The present paper evaluates the inclusion of a standard strain or outbred stock in multi-strain behavioral phenotyping protocols to perform the same role as the external standard in biochemical assay procedures. As potential standards, the F344 inbred strain and an outbred stock of Long Evans were tested with three other inbred strains. To evaluate the influence of rearing conditions on phenotype stability, one group of F344s was born at the University of Tsukuba, another, bred elsewhere and delivered to Tsukuba at 4 weeks of age. All animals were tested in open-field (OF), runway emergence (RE) and digging tests as adults. The results showed no influence of breeding or transportation history on OF and RE behavior of the two F344 groups, while there was evidence that digging behavior may be affected by the different rearing experience. The inclusion of a ‘standard strain or stock’ in phenotyping protocols involving multiple inbred strains or lines of rats, mice and flies has obvious advantages by providing a reference point for inter-laboratory comparisons. The properties of inbred strains and outbred stocks favorable to their use as standards are discussed.

KEYWORDS:

Behavioral phenotyping F344 LE rats standard strain THE TLE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belknap, J. K., Riggan, J., Cross, S. J., Young, E. R., Gallaher, E. J., Crabbe, J. C. 1993Genetic determinants of morphine activity and thermal responses in 15 inbred mouse strainsPharmacol. Biochem. Behav.59353360Google Scholar
  2. Blizard, D. A., Bailey, D. W. 1979Genetic correlation between open-field activity and defecation: analysis with CXB recombinant-inbred strainsBehav. Genet.9349357Google Scholar
  3. Blizard, D. A., Randt, C. T. 1974Genotype interaction with undernutrition and external environment in early lifeNature251705707Google Scholar
  4. Blizard, D. A., Vandenbergh, D. J., Jefferson, A. L., Chatlos, C. D., Vogler, G. P., McClearn, G. E. 2004Effects of periadolescent ethanol exposure on alcohol preference in two BALB substrainsAlcohol3419Google Scholar
  5. Churchill, G.A Airey, D. C. Allayee, H. Angel, J. M. Attie, A. D. Beatty, J. Beavis, W. D. Belknap, J. K. Bennett, B. Berrettini, W. Bleich, A. Bogue, M. Broman, K. W. Buck, K. J. Buckler, E. Burmeister, M. Chesler, E. J. Cheverud, J. M. Clapcote, S. Cook, M.N Cox, R. D. Crabbe, J. C. Crusio, W. E. Darvasi, A. Deschepper, C. F. Doerge, R. W. Farber, C. R. Forejt, J. Gaile, D. Garlow, S. J. Geiger, H. Gershenfeld, H. Gordon, T. Gu, J. Gu, W. Haan, G. Hayes, N. L. Heller, C. Himmelbauer, H. Hitzemann, R. Hunter, K. Hsu, H. C. Iraqi, F. A. Ivandic, B. Jacob, H. J. Jansen, R. C. Jepsen, K. J. Johnson, D. K. Johnson, T. E. Kempermann, G. Kendziorski, C. Kotb, M. Kooy, R. F. Llamas, B. Lammert, F. Lassalle, J. M. Lowenstein, P. R. Lu, L. Lusis, A. Manly, K. F. Marcucio, R. Matthews, D. Medrano, J. F. Miller, D. R. Mittleman, G. Mock, B. A. Mogil, J. S. Montagutelli, X. Morahan, G. Morris, D. G. Mott, R. Nadeau, J. H. Nagase, H. Nowakowski, R. S. O’Hara, B. F. Osadchuk, A. V. Page, G. P. Paigen, B. Paigen, K. Palmer, A. A. Pan, H. J. Peltonen-Palotie, L. Peirce, J. Pomp, D. Pravenec, M. Prows, D. R. Qi, Z. Reeves, R. H. Roder, J. Rosen, G. D. Schadt, E. E. Schalkwyk, L. C. Seltzer, Z. Shimomura, K. Shou, S. Sillanpaa, M. J. Siracusa, L. D. Snoeck, H. W. Spearow, J. L. Svenson, K. Tarantino, L. M. Threadgill, D. Toth, L. A. Valdar, W. Villena, F. P. Warden, C. Whatley, S. Williams, R. W. Wiltshire, T. Yi, N. Zhang, D. Zhang, M. Zou, F. Complex Trait Consortium2004The Collaborative Cross, a community resource for the genetic analysis of complex traitsNat. Genet.3611331137Google Scholar
  6. Crabbe, J. C., Gallaher, E. J., Phillips, T. J., Belknap, J. K. 1994Genetic determinants of sensitivity to ethanol in inbred miceBehav. Neurosci.108186195Google Scholar
  7. Crabbe, J. C., Gallaher, E. J., Cross, S. J., Belknap, J. K. 1998Genetic determinants of sensitivity to diazepam in inbred miceBehav. Neurosci.112668677Google Scholar
  8. Crabbe, J. C., Metten, P., Gallaher, E. J., Belknap, J. K. 2002Genetic determinants of sensitivity to pentobarbital in inbred micePsychopharmacology161408416Google Scholar
  9. Crabbe, J. C., Wahlsten, D., Dudek, B. C. 1999Genetics of mouse behavior: interactions with laboratory environmentScience28416701672Google Scholar
  10. DeFries, J. C., Hegmann, J. P., Weir, M. W. 1966Open-field behavior in mice: evidence for a major gene effect mediated by the visual systemScience15415771579Google Scholar
  11. Frankel, W. N., Taylor, L., Beyer, B., Tempel, B. L., White, H. S. 2001Electroconvulsive thresholds of inbred mouse strainsGenomics74306312Google Scholar
  12. Fujita, O., Annen, Y., Kitaoka, A. 1994Tsukuba High- and Low-Emotional strains of rats (Rattus norvegicus): an overviewBehav. Genet.24389415Google Scholar
  13. Grubb, S. C., Churchill, G. A., Bogue, M. A. 2004A collaborative database of inbred mouse strain characteristicsBioinformatics2028572859Google Scholar
  14. Henderson, N. D. 1967Prior treatment effects on open field behavior of mice – a genetic analysisAnim. Behav.15364376Google Scholar
  15. Henderson, N. D. 1975Short exposures to enriched environments can increase genetic variability of behavior in miceDev. Psychobiol.9549553Google Scholar
  16. Henderson, N. D. 1980Effects of early experience upon the behavior of animals: the second twenty-five years of researchSimmel, E. C. eds. Early experiences and early behavior: Implications for social developmentAcademic PressNew York3977Google Scholar
  17. McClearn, G. E. 1997Heterogeneous reference populations in animal model research in agingILAR J.38119123Google Scholar
  18. McClearn, G. E., Wilson, J. R., Meredith, W. 1970The use of isogenic and heterogenic mouse stocks in behavioral researchLindzey, G.Thiessen, D. D. eds. Contributions to behavior-genetic analysis: The mouse as a prototypeAppleton-Century-CroftsNew York322Google Scholar
  19. Rodriguez, L. A., Plomin, R., Blizard, D. A., Jones, B. C., McClearn, G. E. 1995Alcohol acceptance, preference, and sensitivity in mice: II. Quantitative trait loci mapping analysis using BXD recombinant inbred strainsAlcohol. Clin. Exp. Res.19367373Google Scholar
  20. Shisa, H., Lu, L., Katoh, H., Kawarai, A., Tanuma, J., Matsushima, Y., Hiaia, H. 1997The LEXF: a new set of rat recombinant inbred strains between LE/Stm and F344Mamm. Genome8324327Google Scholar
  21. Thompson, R. W. 1953The inheritance of behavioral differences in fifteen mouse strainsCan. J. Psychol.7145155Google Scholar
  22. Wahlsten, D. W., and 19 co-authors (2003). Different data from different labs: lessons from studies of gene-environment interaction. J. Neurobiol. 54:283–311.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • David A. Blizard
    • 1
  • Yumiko Wada
    • 2
  • Yasuhiro Onuki
    • 2
  • Katsunori Kato
    • 2
  • Toshiyuki Mori
    • 2
  • Tohru Taniuchi
    • 2
  • Hiroshi Hosokawa
    • 2
  • Takayuki Otobe
    • 2
  • Aki Takahashi
    • 2
  • Hayase Shisa
    • 3
  • Hiroshi Hiai
    • 4
  • Junshiro Makino
    • 2
  1. 1.Center for Developmental and Health GeneticsPennsylvania State UniversityUniversity ParkUSA
  2. 2.Institute of PsychologyUniversity of TsukubaTsukubaJapan
  3. 3.Department of PathologySaitama Cancer Center Research InstituteIna-machiJapan
  4. 4.Department of Pathology and Biology of Diseases, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations