Advertisement

A probabilistic seismic hazard map for the metropolitan France

  • Stéphane DrouetEmail author
  • Gabriele Ameri
  • Kristell Le Dortz
  • Ramon Secanell
  • Gloria Senfaute
Original Research
  • 36 Downloads

Abstract

This paper presents the development of a probabilistic seismic hazard analysis (PSHA) model to compute seismic hazard maps for the French territory taking into account 15 years of research and development in the area. Since 2002, when the first probabilistic hazard map was computed for France, many new data became available leading to new studies and experience gained. This 2017 PSHA version for France incorporates significant improvements over previous version. In particular, the recent SIGMA project 2010–2016 produced a number of outputs which are used in the present analysis: a homogenized earthquake catalogue in moment magnitude (Mw), a Bayesian methodology to compute distributions of maximum magnitudes, ground motion prediction equations specifically developed for the French territory, new seismotectonic analysis conducted based on geological, structural, geophysical, neotectonic and seismological data. Preliminary comparison of median PGA values at 475 years return period with results obtained independently for neighboring countries (Germany, Switzerland, and Italy) reveals a fair agreement. Comparison with the 2013 European Seismic Hazard Model (ESHM13, SHARE project) and the model for France developed in 2002 indicates that 2017 PSHA version leads to lower hazard.

Keywords

PSHA Hazard maps France 

Notes

Acknowledgements

The study has been funded by EDF. The authors would like to warmly thank Christophe Durouchoux, Nicolas Humbert, Emmanuel Viallet, Christophe Martin, Pierre Labbé, and Paola Traversa for fruitful discussions during meetings held all along the study. IRSN is also thanked for providing the IRSN area source model. The two anonymous reviewers and the Editor are also warmly thanked for their constructive comments which helped to improve the manuscript.

Supplementary material

10518_2020_790_MOESM1_ESM.xlsx (22 kb)
Supplementary file1 (XLSX 21 kb)

References

  1. Abrahamson N, Silva WJ (2008) Summary of the Abrahamson & Silva NGA ground-motion relations. Earthq Spectra 24:67–97CrossRefGoogle Scholar
  2. Abrahamson N, Silva WJ, Kamai R (2014) Summary of the ASK14 ground-motion relation for active crustal regions. Earthq Spectra 30(3):1025–1055CrossRefGoogle Scholar
  3. Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81(2):195–206CrossRefGoogle Scholar
  4. Akkar S, Sandikkaya MA, Şenyurt M, Azari Sisi A, Ay BÖ, Traversa P, Douglas J, Cotton F, Luzi L, Hernandez B, Godey S (2014) Reference database for seismic ground-motion in Europe (RESORCE). Bull Earthq Eng 12(1):311–339CrossRefGoogle Scholar
  5. Ameri G (2014) Empirical ground motion model adapted to the French context. Deliverable SIGMA: SIGMA-2014-D2-131Google Scholar
  6. Ameri G, Baumont D, Gomes C, Le Dortz K, Le Goff B, Martin C, Secanell R (2015) On the choice of maximum earthquake magnitude for seismic hazard assessment in metropolitan France—insight from the Bayesian approach. In: 9ème Colloque National AFPS 2015, 30 novembre-2 décembre 2015, IFSTTARGoogle Scholar
  7. Ameri G, Drouet S, Traversa P, Bindi D, Cotton F (2017) Toward an empirical ground motion prediction equation for France: accounting for regional differences in the source stress parameter. Bull Earthq Eng.  https://doi.org/10.1007/s10518-017-0171-1 CrossRefGoogle Scholar
  8. Autran A., Bles J-L, Combes P, Cushing M, Dominique P, Durouchoux C, Gariel J-C, Goula X, Mohammadioun B, Terrier M (1998) Probabilistic seismic hazard assessment in France. In: Part one: seismotectonic zonation—11th European conference on earthquake engineering, Balkema, RotterdamGoogle Scholar
  9. Baize S, Cushing EM, Lemeille F, Jomard H (2013) Updated seismotectonic zoning scheme of Metropolitan France, with reference to geologic and seismotectonic data. Bull Soc Géol France 184(3):225–259CrossRefGoogle Scholar
  10. Bakun WH, McGarr A (2002) Differences in attenuation among the stable continental regions. Geophys Res Lett 29(23):2121.  https://doi.org/10.1029/2002GL015457 CrossRefGoogle Scholar
  11. Bard P-Y, Hernandez B, Jalil W, Labbé P, Mouroux P, Sollogoub P, Viallet E (2007) AFPS French zoning group report.  https://doi.org/10.13140/RG.2.2.10423.01447
  12. Baumont D, Manchuel K, Traversa P, Durouchoux C, Nayman E, Ameri G (2018) Intensity predictive attenuation models calibrated in Mw for metropolitan France. Bull Earthq Eng 16(6):2285–2310CrossRefGoogle Scholar
  13. Beauval C, Scotti O (2003) Mapping b-values in France using two different magnitude ranges: possible non power-law behavior. Geophys Res Lett.  https://doi.org/10.1029/2003GL017576 CrossRefGoogle Scholar
  14. Beauval C, Tasan H, Laurendeau A, Delavaud E, Cotton F, Guéguen P, Kuehn N (2012) On the testing of ground-motion prediction equations against small-magnitude data. Bull Seismol Soc Am 102(5):1994–2007CrossRefGoogle Scholar
  15. Berge-Thierry C, Cushing E, Scotti O, Bonilla F (2004) Determination of the seismic input in France for the nuclear power plants safety. Regulatory context, hypothesis and uncertainties treatment. In: Proceedings of the CSNI workshop on seismic input motions, incorporating recent geological studies, Tsukuba, Japan, 15–17 NovemberGoogle Scholar
  16. Bles JL, Bour M, Dominique P, Godefroy P, Martin C, Terrier M (1998) Zonage sismique de la France métropolitaine pour l'application des règles parasismiques aux installations classées. BRGM, Document n° 279, 56 p., 8 fig., 5 tablGoogle Scholar
  17. Bozorgnia et al (2014) NGA-West2 research project. Earthq Spectra 30(3):973–987CrossRefGoogle Scholar
  18. Burkhard M, Grünthal G (2009) Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b). Swiss J Geosci 102:149–188.  https://doi.org/10.1007/s00015-009-1307-3 CrossRefGoogle Scholar
  19. Camelbeeck T, Alexandre P, Vanneste K, Meghraoui M (2000) Long term seismicity in regions of present day low seismic activity: the example of western Europe. Soil Dyn Earthq Eng 20:405–414CrossRefGoogle Scholar
  20. Cara et al (2015) SI-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bull Soc Géol France 186(1):3–19CrossRefGoogle Scholar
  21. Cara M, Denieul M, Sèbe O, Delouis B, Cansi Y, Schlupp A (2017) Magnitude Mw in metropolitan France. J Seismol 21:551–565.  https://doi.org/10.1007/s10950-016-9617-1 CrossRefGoogle Scholar
  22. Cauzzi C, Faccioli E (2008) Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. J Seismol 12(4):453–475CrossRefGoogle Scholar
  23. Cauzzi C, Faccioli E, Vanini M, Bianchini A (2015) Updated predictive equations for broadband (0.01 to 10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthq Eng 13(6):1587–1612CrossRefGoogle Scholar
  24. Delavaud E, Cotton F, Akkar S, Scherbaum F, Danciu L et al (2012) Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. J Seismol 16(3):451–473CrossRefGoogle Scholar
  25. Delvaux D (1993) The TENSOR program for paleostress reconstruction: examples from the east African and the Baikal rift zones. In: Terra Abstracts. Abstract supplement No. 1 to Terra Nova, 5, 216Google Scholar
  26. Delvaux D, Sperner B (2003) New aspects of tectonic stress inversion with reference to the TENSOR program. In: Nieuland DA (ed) New insights into structural interpretation and modelling, vol 212. Geological Society, London, Special Publications, pp 75–100CrossRefGoogle Scholar
  27. Douglas J, Akkar S, Ameri G, Bard P-Y, Bindi D et al (2014a) Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bull Earthq Eng 12(1):341–358CrossRefGoogle Scholar
  28. Douglas J, Ulrich T, Bertil D, Rey J (2014b) Comparison of the ranges of uncertainty captured in different seismic-hazard studies. Seismol Res Lett 85(5):977–985CrossRefGoogle Scholar
  29. Drouet S, Cotton F (2015) Regional stochastic GMPEs in low-seismicity areas: scaling and aleatory variability analysis—application to the French Alps. Bull Seismol Soc Am 105(4):1883–1902CrossRefGoogle Scholar
  30. Drouet S (2017) Erratum to regional stochastic GMPEs in low-seismicity areas: scaling and aleatory variability analysis—application to the French Alps. Bull Seismol Soc Am 107(1):501–503CrossRefGoogle Scholar
  31. EPRI (2012) Technical report: Central and Eastern United States Seismic Source Characterization for Nuclear Facilities. EPRI, Palo Alto, CA, U.S. DOE, and U.S. NRC: 2012Google Scholar
  32. Faccioli E, Paolucci R, Vanini M (2015) Evaluation of probabilistic site-specific seismic-hazard methods and associated uncertainties, with applications in the Po Plain. Bull Seismol Soc Am, Northern Italy.  https://doi.org/10.1785/0120150051 CrossRefGoogle Scholar
  33. Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367Google Scholar
  34. Grellet B, Combes P, Granier T, Philip H (1993) Sismotectonique de la France métropolitaine dans son cadre géologique et géophysique avec atlas de 23 cartes au 1/4.000.000ème et 1 carte au 1/1.000.000ème. ISPN, Mémoire de la Société Géologique de France, 2 Vol., n° 164, 76 p., 19 Pl., 1 carteGoogle Scholar
  35. Grünthal G, Stromeyer D, Bosse C, Cotton F, Bindi D (2018) The probabilistic seismic hazard assessment of Germany–-version 2016, considering the range of epistemic uncertainties and aleatory variability. Bull Earthq Eng 16:4339–4395CrossRefGoogle Scholar
  36. Gruppo di Lavoro MPS (2004). Redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendiciGoogle Scholar
  37. Hakimhashemi AH, Grünthal G (2012) A statistical method for estimating catalog completeness applicable to long-term nonstationary seismicity data. Bull Seismol Am 102(6):2530–2546CrossRefGoogle Scholar
  38. Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2009) Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics.  https://doi.org/10.1016/j.tecto.2009.1007.1023 CrossRefGoogle Scholar
  39. Helmstetter A, Werner MJ (2012) Adaptive spatiotemporal smoothing of seismicity for long-term earthquake forecasts in California. Bull Seismol Soc Am 102(6):2518–2529CrossRefGoogle Scholar
  40. Johnston AC, Kanter LR, Coppersmith KJ, Cornell CA (1994) The earthquakes of stable continental regions. Tech. Rep. Electric Power Research Institute (EPRI), Palo Alto, CaliforniaGoogle Scholar
  41. Le Dortz K, Combes P, Carbon D (2019). An alternative seismotectonic zonation for probabilistic and deterministic seismic hazard assessment for Metropolitan France, 10ème Colloque National AFPSGoogle Scholar
  42. Manchuel K, Traversa P, Baumont DM, Cara M, Nayman E, Durouchoux C (2017) The French seismic CATalogue (FCAT-17). Bull Earthquake Eng.  https://doi.org/10.1007/s10518-017-0236-1 CrossRefGoogle Scholar
  43. Marin S, Avouac J-P, Nicolas M, Schlupp A (2004) A probabilistic approach to seismic hazard in metropolitan France. Bull Seismol Soc Am 94(6):2137–2163. ISSN 0037-1106CrossRefGoogle Scholar
  44. Martelet G, Pajot G, Debeglia N (2009) Nouvelle carte gravimétrique de la France. RCGF09—Réseau et Carte Gravimétrique de la France, 2009. Rapport BRGM/RP-57908-FR, 77 p. 26 fig., 2 annGoogle Scholar
  45. Martin C, Secanell R, Combes C, Lignon G (2002). Preliminary probabilistic seismic hazard assessement of France. In: 12th European conference on earthquake engineering, Londres, 9–13 septemberGoogle Scholar
  46. Martin C, Ameri G, Baumont D, Carbon D, Senfaute G, Thiry JM, Faccioli E, Savy J (2017) Probabilistic seismic hazard assessment for South-Eastern France. Bull Earthq Eng 16(6):2477–2511.  https://doi.org/10.1007/s10518-017-0249-9 CrossRefGoogle Scholar
  47. Papazachos BC, Scordilis EM, Panagiotopoulos DG, Papazachos CB, Karakaisis GF (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. In: Proceeding of the 10th international congress, Thessaloniki, April, Bulletin of the Geological Society of Greece, vol 36, pp 1482–1489CrossRefGoogle Scholar
  48. Pecker A, Faccioli E, Gurpinar A, Martin C, Renault P (2017) An overview of the SIGMA research project. Springer, Berlin.  https://doi.org/10.1007/978-3-319-58154-5 CrossRefGoogle Scholar
  49. Petersen MD, Harmsen SC, Jaiswal KS, Rukstales KS, Luco N, Haller KM, Mueller CS, Shumway AM (2018) Seismic hazard, risk, and design for south America. Bull Seismol Soc Am 108(2):781–800Google Scholar
  50. Reasenberg EA (1985) Second-order moment of central California seismicity. J Geophys Res 90:5479–5495CrossRefGoogle Scholar
  51. Rey J, Beauval C, Douglas J (2018) Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013? J Seismol 22:589–604CrossRefGoogle Scholar
  52. RFS 2001-01 (2001) French safety rule, published by the French Nuclear Safety Authority. https://www.asn.fr/Reglementer/Regles-fondamentales-de-surete/RFS-relatives-aux-REP/RFS-2001-1-RFS-I.1.c.-du-31-05-2001
  53. Scherbaum F, Kuehn N, Ohrnberger M, Koehler A (2010) Exploring the proximity of ground-motion models using high-dimensional visualization techniques. Earthq Spectra 26(4):1117–1138CrossRefGoogle Scholar
  54. Senfaute G, Pecker A, Labbé P, Sidaner J-F, Berge-Thierry C, Rzepka J-P, Contri P (2015) Contribution of the SIGMA research program to analyses of uncertainties in seismic hazard assessment, 9ème Colloque National. AFPS, France, p 2015Google Scholar
  55. Tasan H, Beauval C, Helmstetter A, Sandikkaya A, Guéguen P (2014) Testing probabilistic seismic hazard estimates against accelerometric data in two countries: France and Turkey. Geophys J Int 198:1554–1571CrossRefGoogle Scholar
  56. Tinti S, Mulargia F (1985) Effects of magnitude uncertainties on estimating the parameters in the Gutenberg–Richter frequency-magnitude law. Bull Seismol Soc Am 75(6):1681–1697Google Scholar
  57. Traversa P, Baumont DM, Manchuel K, Nayman E (2017) Exploration tree approach to estimate historical earthquakes Mw and depth, test cases from the French past seismicity. Bull Earthq Eng.  https://doi.org/10.1007/s10518-017-0178-7 CrossRefGoogle Scholar
  58. Traversa P, Maufroy E, Hollender F, Foundotos L, Perron V, Drouet S, Shible H, Dauchy C, Herve F, Gueguen P (2018). RAP-RESIF ground motion dataset. Abstract n° ESC2018-S15–891, 36th General Assembly of the European Seismological Commission, 2–7 September 2018, Valletta, MaltaGoogle Scholar
  59. Vanneste K, Verbeeck K (2001) Paleoseismological analysis of the Rurrand fault near Jülich Roer Valley graben, Germany: Coseismic or aseismic faulting history? Netherlands J Geosci Geol Mijnbouw 80(3–4):155–169CrossRefGoogle Scholar
  60. Vanneste K, Camelbeeck T, Verbeeck K (2013) A model of composite seismic sources for the lower Rhine Graben. Northwest Europe. Bull Seismol Soc America 103(2A):984–1007.  https://doi.org/10.1785/0120120037 CrossRefGoogle Scholar
  61. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70:1337–1346Google Scholar
  62. Wells D, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture area & surface displacement. Bull Seismol Soc Am 84(4):974–1002Google Scholar
  63. Wesnousky SG (2008) Displacement and geometrical characteristics of earthquake surface ruptures: issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bull Seismol Soc Am 98(4):1609–1632CrossRefGoogle Scholar
  64. Wiemer S, Giardini D, Fäh D, Deichmann N, Sellami S (2009) Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties. J Seismol 13:449–478CrossRefGoogle Scholar
  65. Wiemer S, Danciu L, Edwards B, Marti M, Fäh D, Hiemer S, Wössner J, Cauzzi C, Kästli P, Kremer K (2016) Seismic hazard model 2015 for Switzerland (SUIhaz2015). Swiss Seismological Service (SED) at ETH ZurichGoogle Scholar
  66. Woessner et al (2015) The 2013 European Seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596CrossRefGoogle Scholar
  67. Woo G (1996) Kernel estimation methods for seismic hazard area source modeling. Bull Seismol Soc Am 86(2):353–362Google Scholar
  68. Ziegler PA, Dèzes P (2006) Crustal evolution of western and central Europe. Geol Soc Lond Mem 32:43–56.  https://doi.org/10.1144/GSL.MEM.2006.032.01.03 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.FUGRO FranceAuriolFrance
  2. 2.EDF R&DParis SaclayFrance
  3. 3.SEISTERAubagneFrance

Personalised recommendations