Advertisement

Damage assessment of modern masonry buildings after the L’Aquila earthquake

  • Bruno Calderoni
  • Emilia Angela Cordasco
  • Marta Del ZoppoEmail author
  • Andrea Prota
Original Research
  • 50 Downloads

Abstract

This paper deals with the structural behaviour and the damage assessment of Italian “modern” masonry buildings during seismic events. “Modern” masonry buildings are characterized by a box-like structural behaviour, due to the presence of effective connections between horizontal floors and vertical load-bearing walls, which prevents local mechanisms such as the overturning of external façades during earthquakes. “Modern” masonry buildings were built in Italy since the first decades of XX century in those regions classified as seismic zone and since 1937 in the whole country, following the Italian code prescriptions that implicitly interdicted the erection of “ancient” masonry buildings. Starting from an in deep historical analysis of the Italian seismic codes’ prescriptions for the design of “modern” masonry buildings, the typical characteristics of the most frequent structural typologies of unreinforced masonry buildings are outlined. Then, the typical damage mechanisms observed in “modern” masonry buildings damaged after the L’Aquila earthquake (2009) are reported in relation with both the global and local behaviour of the whole building and its structural elements. The analysis demonstrated that “modern” masonry buildings experienced a good box-like seismic performance, which avoided global or local collapses, but shown severe damage to piers and spandrels related to their reduced in-plane shear capacity. Given the lack of data on such kind of structural typology, this study is fundamental for understanding and modelling the seismic behaviour of “modern” masonry buildings designed before ‘80s according to different seismic design prescriptions and for defining effective strengthening solutions for reducing their seismic vulnerability.

Keywords

Modern masonry building Ring beam R.c. slab Damage assessment In-plane shear 

Notes

Acknowledgements

This study was performed in the framework of the joint program DPC Reluis 2019–2021.

References

  1. Andreini M, De Falco A, Giresini L, Sassu M (2014) Structural damage in the cities of Reggiolo and Carpi after the earthquake on May 2012 in Emilia Romagna. Bull Earthq Eng 12(5):2445–2480CrossRefGoogle Scholar
  2. Beinersdorf S, Schwarz J, Langhammer T (2013) Vulnerability assessment of a building stock and reliability considerations on the basis of observed damage grades: reconstruction of the September 3, 1978 Albstadt earthquake. In: Vienna congress on recent advances in earthquake engineering and structural dynamics 2013 (VEESD 2013), Wien, August 2013Google Scholar
  3. Benedetti A (2019) Diagonal compression behaviour of masonry walls reinforced with FRM coatings. In: Structural analysis of historical constructions. Springer, Cham, pp 474–483CrossRefGoogle Scholar
  4. Borri A, Castori G, Grazini A (2009) Retrofitting of masonry building with reinforced masonry ring-beam. Constr Build Mater 23(5):1892–1901CrossRefGoogle Scholar
  5. Calderoni B, Cordasco EA, Lenza P (2010) Il comportamento strutturale delle fasce di piano degli edifici in muratura soggetti ad azioni orizzontali: indagine sperimentale. Ing Sismica 4:49–70Google Scholar
  6. Calderoni B, Cordasco EA, Lenza P, Pacella G (2011) Considerazioni sui danni agli edifici in muratura del centro storico de L’Aquila. In: L’università e la ricerca per l’Abruzzo: il come e il perché dei danni ai monumenti, Editor PEEXTUS L’AquilaGoogle Scholar
  7. Carocci CF (2012) Small centres damaged by 2009 L’Aquila earthquake: on site analyses of historical masonry aggregates. Bull Earthq Eng 10(1):45–71CrossRefGoogle Scholar
  8. Casacci S, Gentilini C, Di Tommaso A, Oliveira DV (2019) Shear strengthening of masonry wallettes resorting to structural repointing and FRCM composites. Constr Build Mater 206:19–34CrossRefGoogle Scholar
  9. D’Ayala DF, Paganoni S (2011) Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bull Earthq Eng 9(1):81–104CrossRefGoogle Scholar
  10. Del Zoppo M, Di Ludovico M, Balsamo A, Prota A (2019a) In-plane shear capacity of tuff masonry walls with traditional and innovative composite reinforced mortars (CRM). Constr Build Mater 210:289–300CrossRefGoogle Scholar
  11. Del Zoppo M, Di Ludovico M, Balsamo A, Prota A (2019b) Experimental in-plane shear capacity of clay brick masonry panels strengthened with FRCM and FRM composites. J Compos Constr.  https://doi.org/10.1061/(ASCE)CC.1943-5614.0000965 CrossRefGoogle Scholar
  12. DM (1975) Decreto Ministeriale 3 marzo 1975, Norme tecniche per le costruzioni in zone sismiche. Gazzetta Ufficiale 8 April 1975, n.93 (in Italian) Google Scholar
  13. DM (1984) Decreto Ministeriale 19 giugno 1984, Norme tecniche relative alle costruzioni sismiche. Gazzetta Ufficiale 30 July 1983, n.208 (in Italian) Google Scholar
  14. DM (1987) Decreto Ministeriale 20 novembre 1987, Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento. Gazzetta Ufficiale 5 December 1983, n.285 (in Italian) Google Scholar
  15. DM (1996) Decreto Ministeriale 16 gennaio 1996, Norme tecniche per le costruzioni in zone sismiche. Gazzetta Ufficiale 5 February 1996, n.29 (in Italian) Google Scholar
  16. Dutu A, Ferreira JG, Guerreiro L, Branco F, Goncalves AM (2012) Timbered masonry for earthquake resistance in Europe. Mater Constr 62(308):615–628CrossRefGoogle Scholar
  17. Grünthal G (ed.) (1998) European macroseismic scale 1998 (EMS-98). Cahiers du Centre Européen de Géodynamique et de Séismologie 15, CEGS, Luxembourg, p 99Google Scholar
  18. Indirli M, Kouris S, Formisano A, Borg RP, Mazzolani FM (2013) Seismic damage assessment of unreinforced masonry structures after the abruzzo 2009 earthquake: the case study of the historical centers of L’Aquila and Castelvecchio Subequo. Int J Archit Herit 7(5):536–578CrossRefGoogle Scholar
  19. Lagomarsino S, Cattari S (2009) Non linear seismic analysis of masonry buildings by the equivalent frame model. In: Proceedings of DACH conference: masonry and earthquakes, Zurich, pp 85–100Google Scholar
  20. Pagano M (1990) Costruire in muratura–nuove normative. Liguori editore, Naples (in Italian) Google Scholar
  21. Penna A, Morandi P, Rota M, Manzini CF, Da Porto F, Magenes G (2014) Performance of masonry buildings during the Emilia 2012 earthquake. Bull Earthq Eng 12(5):2255–2273CrossRefGoogle Scholar
  22. RDL (1909) Regio Decreto Legge 18 aprile 1909 n. 193, Norme tecniche ed igieniche obbligatorie per le riparazioni ricostruzioni e nuove costruzioni degli edifici pubblici e privati nei luoghi colpiti dal terremoto del 28 dicembre 1908 e da altri precedenti. Gazzetta Ufficiale 22 April 1909 n.95 (in Italian) Google Scholar
  23. RDL (1915) Regio Decreto Legge 29 aprile 1915 n. 573, Norme tecniche di edilizia asismica per i paesi colpiti da terremoti. Gazzetta Ufficiale 11 May 1915 n.117 (in Italian) Google Scholar
  24. RDL (1927) Regio Decreto Legge 13 marzo 1927 n. 431, Norme tecniche ed igieniche di edilizia per le località colpite dai terremoti. Gazzetta Ufficiale 8 April 1927 n.82 (in Italian) Google Scholar
  25. RDL (1937) Regio Decreto Legge 22 novembre 1937 n. 2015, che riguarda le norme tecniche ed igieniche da osservarsi per i lavori edilizi nelle località colpite dal terremoto del 13 gennaio 1915. Gazzetta Ufficiale 27 dicembre 1937 n.298 (in Italian) Google Scholar
  26. Sandoli A, Calderoni B (2018) Assessment of the seismic vulnerability at territorial scale: a new structural classification of existing buildings and definition of fragility curves. In: Proceedings of 10th international masonry conference (IMC), MilanoGoogle Scholar
  27. Sandoli A, Calderoni B (2019) Methodology for an effective retrofitting strategy of existing masonry buildings: a case study near L’Aquila. Int J Mason Res Innov (in press) Google Scholar
  28. Sisti R, Di Ludovico M, Borri A, Prota A (2019) Damage assessment and the effectiveness of prevention: the response of ordinary unreinforced masonry buildings in Norcia during the Central Italy 2016–2017 seismic sequence. Bull Earthq Eng 17(10):5609–5629CrossRefGoogle Scholar
  29. Sorrentino L, Cattari S, da Porto F, Magenes G, Penna A (2019) Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bull Earthq Eng 17(10):5583–5607CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of Structures for Engineering and ArchitectureUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations