Bulletin of Earthquake Engineering

, Volume 17, Issue 9, pp 4743–4796 | Cite as

Site-specific probabilistic seismic hazard analysis for the western area of Naples, Italy

  • Hossein Ebrahimian
  • Fatemeh JalayerEmail author
  • Giovanni Forte
  • Vincenzo Convertito
  • Valeria Licata
  • Anna d’Onofrio
  • Antonio Santo
  • Francesco Silvestri
  • Gaetano Manfredi
Original Research


Probabilistic seismic hazard analysis (PSHA) encompasses quantitative estimation of seismic hazard at a site by considering all plausible earthquake scenarios. The outcome of a PSHA is often reported as the mean rate of exceeding a specific ground motion intensity measure at a given site. This study attempts to perform PSHA for the western area of the city Naples (southern Italy) by employing the most advanced methods and new databases; namely, DISS3.2 (Database of Individual Seismogenic Sources) and CPTI15 (Parametric Catalogue of Italian Earthquakes). Seismogenic models include individual seismogenic structures/faults liable to generating major earthquakes with magnitude greater than 5.5, and background areal source model to evaluate the effect of earthquakes with magnitude less than 5.5. The PSHA is built up based on the long-term earthquake recurrence on seismogenic tectonic faults and the spatial distribution of historical earthquakes. Site amplification is considered based on seismic microzonation maps derived for the western area of Naples. The microzonation maps delineate expected levels of ground motion amplification based on reliable geological and geotechnical subsoil models. Hazard maps are derived for a number of return periods for ground-shaking in terms of peak ground acceleration and 5%-damped pseudo-spectral acceleration at a range of periods that are representative of the existing construction within the area. Detailed comparisons of the PSHA results with Italian national hazard maps and the code-based design spectra emphasize the importance of performing site-specific PSHA with explicit consideration of site effects.


Site-specific PSHA Seismogenic source model Seismic microzonation Ground-motion prediction equation Hazard map Uniform hazard spectrum 



This work was supported in part by Project METROPOLIS (Metodologie e Tecnologie Integrate e Sostenibili Per L’adattamento e La Sicurezza di Sistemi Urbani). This support is gratefully acknowledged. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor. The authors would also like to gratefully acknowledge Dr. Dino Bindi (Helmholtz Centre Potsdam) for the fruitful discussions on the database of ground motions used for ITA10 and BND14 ground-motion prediction models. In addition, the authors would like to gratefully acknowledge Dr. Carlo Del Gaudio (University of Naples Federico II) for providing information and statistics on the buildings in the Western Naples including the zones of Bagnoli and Fuorigrotta. Last but not least, the authors would like to acknowledge the scientific coordinator Prof. Gerardo M. Verderame (University of Naples Federico II) and STRESS Scarl staff for their invaluable support and help through the METROPOLIS Project. The authors would also like to acknowledge the anonymous reviewers who have contributed significantly to improving and enriching the paper.

Supplementary material

10518_2019_678_MOESM1_ESM.pdf (7.6 mb)
Supplementary material 1 (PDF 7818 kb)


  1. Abrahamson NA (2000) State of the practice of seismic hazard evaluation. In: International symposium of international society for rock mechanics (ISRM), 19–24 November, Melbourne, Australia, ISRM-IS-2000-014Google Scholar
  2. Akinci A, Galadini F, Pantosti D, Petersen M, Malagnini L, Perkins D (2009) Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the central Apennines, Italy. Bull Seismol Soc Am 99(2A):585–610Google Scholar
  3. Akinci A, Vannoli P, Falcone G et al (2016) When time and faults matter: towards a time-dependent probabilistic SHA in Calabria, Italy. Bull Earthq Eng 15(6):2497–2524Google Scholar
  4. Akkar S, Sandıkkaya MA, Senyurt M et al (2013) Reference database for seismic ground-motion in Europe (RESORCE). Bull Earthq Eng 12(1):311–339Google Scholar
  5. Albarello D, Bosi V, Bramerini F, Lucantoni A, Naso G, Peruzza L, Rebez A, Sabetta F, Slejko D (2000) Carte di pericolosità sismica del territorio nazionale, Quaderni di Geofisica 12, Roma, 7 ppGoogle Scholar
  6. Alessio G, Esposito E, Gorini A, Porfido S (1995) Detailed study of the Potentino seismic zone in the Southern Apennines, Italy. Tectonophysics 250(1):113–134Google Scholar
  7. Ambraseys NN (1995) The prediction of earthquake peak ground acceleration in Europe. Earthq Eng Struct Dyn 24(4):467–490Google Scholar
  8. Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25(4):371–400Google Scholar
  9. Ancheta TD, Darragh RB, Stewart JP et al (2014) NGA-West2 database. Earthq Spectra 30(3):989–1005Google Scholar
  10. Baker JW, Cornell CA (2006) Which spectral acceleration are you using? Earthq Spectra 22(2):293–312Google Scholar
  11. Barani S, Albarello D, Spallarossa D, Massa M (2017a) Empirical scoring of ground motion prediction equations for probabilistic seismic hazard analysis in Italy including site effects. Bull Earthq Eng 15(6):2547–2570Google Scholar
  12. Barani S, Albarello D, Massa M, Spallarossa D (2017b) Influence of twenty years of research on ground motion prediction equations on probabilistic seismic hazard in Italy. Bull Seismol Soc Am 107(1):240–255Google Scholar
  13. Basili R, Valensise G, Vannoli P, Burrato P, Fracassi U, Mariano S, Tiberti MM, Boschi E (2008) The database of individual seismogenic sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 453:20–43. Google Scholar
  14. Benito MB, Navarro M, Vidal F et al (2010) A new seismic hazard assessment in the region of Andalusia (Southern Spain). Bull Earthq Eng 8(4):739–766Google Scholar
  15. Bindi D, Luzi L, Massa M, Pacor F (2010) Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric Archive (ITACA). Bull Earthq Eng 8(5):1209–1230Google Scholar
  16. Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R (2011) Ground motion prediction equations derived from the Italian strong motion database. Bull Earthq Eng 9(6):1899–1920Google Scholar
  17. Bindi D, Massa M, Luzi L, Ameri G, Pacor F, Puglia R, Augliera P (2014a) Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull Earthq Eng 12(1):391–430Google Scholar
  18. Bindi D, Massa M, Luzi L, Ameri G, Pacor F, Puglia R, Augliera P (2014b) Erratum to: Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull Earthq Eng 12(1):431–448Google Scholar
  19. Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic sources for seismic hazard assessment applications: the case of central Apennines (Italy). J Seismol 8(3):407–425Google Scholar
  20. Boore DM (2005) Erratum: equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismol Res Lett 76(3):368–369Google Scholar
  21. Boore DM (2010) Orientation-independent, non geometric-mean measures of seismic intensity from two horizontal components of motion. Bull Seismol Soc Am 100(4):1830–1835Google Scholar
  22. Boore DM, Stewart JP, Seyhan E, Atkinson GM (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq Spectra 30(3):1057–1085Google Scholar
  23. Boschi E, Pantosti D, Valensise G (1995) La valutazione del potenziale sismogenetico in Italia: progressi metodologici e conoscitivi. In: Proceedings of meeting Terremoti in Italia: previsione e prevenzione dei danni, Accademia Nazionale dei Lincei, Rome, 1–2 December 1994, pp 133–138Google Scholar
  24. Bozorgnia Y, Abrahamson NA, Al Atik L et al (2014) NGA-West2 research project. Earthq Spectra 30(3):973–987Google Scholar
  25. Camassi R, Stucchi M (1997) NT 4.1.1, un catalogo parametrico di terremoti di area italiana al di sopra della soglia di danno, GNDT Technical Report, Milano, 66 pp. Accessed Mar 2018
  26. Camassi R, Castelli V, Molin D, Bernardini F, Caracciolo C H, Ercolani E, Postpischl L (2011) Materiali per un catalogo dei terremoti italiani: eventi sconosciuti, rivalutati o riscoperti. Quaderni di Geofisica 96 INGV, Roma, 53 pp (in Italian) Google Scholar
  27. Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24(1):139–171Google Scholar
  28. Castelli V, Galli P, Camassi R, Caracciolo CH (2008) The 1561 earthquake(s) in Southern Italy: new insights into a complex seismic sequence. J Earthq Eng 12(7):1054–1077Google Scholar
  29. CEN - European standard EN1998-1 (2004) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. Comité Européen de Normalisation, BrusselsGoogle Scholar
  30. Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, Donnini C, Minopoli C (2010) Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res Solid Earth 115(B3):1–17Google Scholar
  31. Chopra AK (2012) Dynamics of structures. Theory and application to earthquake engineering, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  32. Convertito V, Zollo A (2011) Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bull Volcanol 73(6):767–783Google Scholar
  33. Convertito V, Emolo A, Zollo A (2006) Seismic-hazard assessment for a characteristic earthquake scenario: an integrated probabilistic–deterministic method. Bull Seismol Soc Am 96(2):377–391Google Scholar
  34. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606Google Scholar
  35. D’addezio G, Masana E, Pantosti D (2001) The holocene paleoseismicity of the Aremogna-Cinque Miglia fault (central Italy). J Seismol 5(2):181–205Google Scholar
  36. Danciu L, Şeşetyan K, Demircioğlu M et al (2018) The 2014 earthquake model of the Middle East: seismogenic sources. Bull Earthq Eng 16(8):3465–3496Google Scholar
  37. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian Volcanic Plain (Italy). Miner Pet 73(1–3):47–65Google Scholar
  38. Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133(1–4):157–170Google Scholar
  39. ñ C, Aquino I, Ricciardi GP, Ricco C, Scandone R (2010) Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009. J Volcanol Geotherm Res 195(1):48–56Google Scholar
  40. Demircioğlu MB, Şeşetyan K, Duman TY et al (2018) A probabilistic seismic hazard assessment for the Turkish territory: part II—fault source and background seismicity model. Bull Earthq Eng 16(8):3399–3438Google Scholar
  41. Di Bucci D, Corrado S, Naso G (2002) Active faults at the boundary between Central and Southern Apennines (Isernia, Italy). Tectonophysics 359(1):47–63Google Scholar
  42. Di Giacomo D, Storchak DA, Safronova N, Ozgo P, Harris J, Verney R, Bondár I (2014) A new ISC service: the bibliography of seismic events. Seismol Res Lett 85(2):354–360Google Scholar
  43. Di Vito MA, Isaia R, Orsi G, Southon J, De Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):221–246Google Scholar
  44. DISS Working Group (2015) Database of individual seismogenic sources (DISS), version 3.2.0: a compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia.,
  45. Ebrahimian H, Jalayer F (2017) Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models. Sci Rep Nat 7(9803):1–15. Google Scholar
  46. Ebrahimian H, Azarbakht AR, Tabandeh A, Golafshani AA (2012) The exact and approximate conditional spectra in the multi-seismic-sources regions. Soil Dyn Earthq Eng 39(1):61–77Google Scholar
  47. Ebrahimian H, Jalayer F, Asprone D, Lombardi AM, Marzocchi W, Prota A, Manfredi G (2014) Adaptive daily forecasting of seismic aftershock hazard. Bull Seism Soc Am 104(1):145–161Google Scholar
  48. Ebrahimian H, Jalayer F, Lucchini A, Mollaioli F, Manfredi G (2015) Preliminary ranking of alternative scalar and vector intensity measures of ground shaking. Bull Earthq Eng 13(10):2805–2840Google Scholar
  49. El-Hussain I, Deif A, Al-Jabri K et al (2012) Probabilistic seismic hazard maps for the sultanate of Oman. Nat Hazards 64(1):173–210Google Scholar
  50. Faenza L, Marzocchi W, Boschi E (2003) A non-parametric hazard model to characterize the spatio-temporal occurrence of large earthquakes; an application to the Italian catalogue. Geophys J Int 155(2):521–531Google Scholar
  51. Faenza L, Pierdominici S, Hainzl S, Cinti FR, Sandri L, Selva J, Tonini R, Perfetti P (2017) A Bayesian seismic hazard analysis for the city of Naples. J Geophys Res Solid Earth 122(3):1990–2012Google Scholar
  52. Fedele L, Scarpati C, Lanphere M, Melluso L, Morra V, Perrotta A, Ricci G (2008) The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull Volcanol 70(10):1189–1219Google Scholar
  53. Field EH, Johnson DD, Dolan JF (1999) A mutually consistent seismic-hazard source model for southern California. Bull Seismol Soc Am 89(3):559–578Google Scholar
  54. Forte G, Fabbrocino S, Fabbrocino G, Lanzano G, Santucci de Magistris F, Silvestri F (2017) A geolithological approach to seismic site classification: an application to the Molise Region (Italy). Bull Earthq Eng 15(1):175–198Google Scholar
  55. Forte G, Chioccarelli E, De Falco M, Cito P, Santo A, Iervolino I (2019) Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements. Soil Dyn Earthq Eng 122:79–93Google Scholar
  56. Fracassi U, Valensise G (2007) Unveiling the sources of the catastrophic 1456 multiple earthquake: hints to an unexplored tectonic mechanism in southern Italy. Bull Seismol Soc Am 97(3):725–748Google Scholar
  57. Galli PAC, Naso JA (2009) Unmasking the 1349 earthquake source (southern Italy): paleoseismological and archaeoseimological indications from the Aquae Iuliae fault. J Struct Geol 31(2):128–149Google Scholar
  58. Giardini D (1999) The global seismic hazard assessment program (GSHAP)—1992/1999. Ann Geophys 42(6):957–974Google Scholar
  59. Gregor N, Abrahamson NA, Atkinson GM et al (2014) Comparison of NGA-West2 GMPEs. Earthq Spectra 30(3):1179–1197Google Scholar
  60. Gruppo di Lavoro (2004) Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, April 2004: 65 pp. + 5 appendixes (in Italian) Google Scholar
  61. Gruppo di lavoro CPTI (2004) Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04), INGV, Bologna.
  62. Gruppo di Lavoro (1999) Proposta di riclassificazione sismica del territorio nazionale. Ing Sismica 16(1):5–14Google Scholar
  63. Gruppo di Lavoro CPTI (1999) Catalogo Parametrico dei Terremoti Italiani, ING, GNDT, SGA, SSN, Bologna.
  64. Gülerce Z, Ocak S (2013) Probabilistic seismic hazard assessment of Eastern Marmara region. Bull Earthq Eng 11(5):1259–1277Google Scholar
  65. Gutenberg B, Richter CF (1949) Seismicity of the earth and associated phenomena. Princeton UniversityPress, PrincetonGoogle Scholar
  66. Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geophys 9:1–15Google Scholar
  67. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350Google Scholar
  68. International Seismological Centre, On-line event bibliography. Internatl. Seis. Cent., Thatcham, UK, 20yy.
  69. Jalayer F, Cornell CA (2009) Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthq Eng Struct Dyn 38(8):951–972Google Scholar
  70. Jalayer F, Ebrahimian H (2017) Seismic risk assessment considering cumulative damage due to aftershocks. Earthq Eng Struct Dyn 46(3):369–389Google Scholar
  71. Jalayer F, Asprone D, Prota A, Manfredi G (2011) A decision support system for post-earthquake reliability assessment of structures subjected to aftershocks: an application to L’Aquila earthquake, 2009. Bull Earthq Eng 9(4):997–1014Google Scholar
  72. Jalayer F, Ebrahimian H, Miano A, Manfredi G, Sezen H (2017) Analytical fragility assessment using un-scaled ground motion records. Earthq Eng Struct Dyn 46(15):2639–2663Google Scholar
  73. Jiménez MJ, Giardini G, Grünthal G et al (2001) Unified seismic hazard modelling throughout the Mediterranean region. Boll Geof Teor Appl 42(1–2):3–18Google Scholar
  74. Kadirioğlu FT, Kartal RF, Kılıç T et al (2018) An improved earthquake catalogue (M ≥ 4.0) for Turkey and its near vicinity (1900–2012). Bull Earthq Eng 16(8):3317–3338Google Scholar
  75. Kagan YY, Jackson DD (2013) Tohoku earthquake: A surprise? Bull Seismol Soc Am 103(2B):1181–1194Google Scholar
  76. Ksentini A, Romdhane NB (2014) Updated seismic hazard assessment of Tunisia. Bull Earthq Eng 12(2):647–670Google Scholar
  77. Leonard M (2010) Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100(5A):1971–1988Google Scholar
  78. Licata V, Forte G, d’Onofrio A, Evangelista L, Jalayer F, Santo A, Silvestri F (2016) Microzonation study on the western area of Napoli. Procedia Eng 158:511–516Google Scholar
  79. Licata V, Forte G, d’Onofrio A, Santo A, Silvestri F (2019a) A multi-level study for the seismic microzonation of the western area of Napoli (Italy). Bull Earthq Eng. Google Scholar
  80. Licata V, Forte G, Ebrahimian H, d’Onofrio A, Jalayer F, Santo A, Silvestri F (2019b) Evaluation of the seismic ground amplification considering the variability of the depth of the bedrock and random shear wave velocity profiles. In: Silvestri F, Moraci N (eds) Proceedings of 7th international conference on earthquake geotechnical engineering, Rome, IT, 17–20 June 2019. CRC Press, 2019 Taylor and Francis Group, London, pp 3601–3608Google Scholar
  81. Luzi L, Sabetta F, Hailemikael S, Bindi D, Pacor F, Mele F (2008) ITACA (ITalian ACcelerometric Archive): a web portal for the dissemination of Italian strong motion data. Seismol Res Lett 79(5):716–722. Google Scholar
  82. Marzocchi W, Sandri L, Boschi E (2003) On a validation of earthquake-forecasting models: the case of pattern recognition algorithms. Bull Seism Soc Am 93(5):1994–2004Google Scholar
  83. Marzocchi W, Sandri L, Heuret A, Funiciello F (2016) Where giant earthquakes may come? J Geophys Res Solid Earth 121(10):7322–7336Google Scholar
  84. McGuire RK (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct Dyn 37(3):329–338Google Scholar
  85. Meletti C, Montaldo V (2007) Stime di pericolosità sismica per diverse probabilità di superamento in 50 anni: valori di ag. Project DPC-INGV S1, deliverable D2 (in Italian). Istituto Nazionale di Geofisica e Vulcanologia—Sezione di Milano-Pavia. Accessed 10 June 2018
  86. Meletti C, Patacca E, Scandone P (2000) Construction of a seismotectonic model: the case of Italy. Pure appl Geophys 157:11–35Google Scholar
  87. Meletti C, Calvi GM, Stucchi M (2007) Project S1—continuation of assistance to DPC for improving and using the seismic hazard map compiled according to the Prime Minister “Ordinanza” 3274/2003 and planning future initiatives—final report, INGV (in Italian). Interactive maps of seismic hazard (WebGis). Accessed 10 June 2018
  88. Meletti C, Galadini F, Valensise G, Stucchi M, Basili R, Barba G, Vannucci G, Boschi E (2008) A seismic source model for the seismic hazard assessment of the Italian territory. Tectonophysics 450(1):85–108Google Scholar
  89. Miano A, Jalayer F, De Risi R, Prota A, Manfredi G (2015) A case-study on scenario-based probabilistic seismic loss assessment for a portfolio of bridges. In: 12th international conference on applications of statistics and probability in civil engineering (ICASP12), Vancouver, Canada, 12–15 JulyGoogle Scholar
  90. Miano A, Jalayer F, De Risi R, Prota A, Manfredi G (2016) Model updating and seismic loss assessment for a portfolio of bridges. Bull Earthq Eng 14(3):699–719Google Scholar
  91. Miano A, Jalayer F, Ebrahimian H, Prota A (2018) Cloud to IDA: efficient fragility assessment with limited scaling. Earthq Eng Struct Dyn 47(5):1124–1147Google Scholar
  92. Mihaljević J, Zupančič P, Kuka N et al (2017) BSHAP seismic source characterization models for the Western Balkan region. Bull Earthq Eng 15(10):3963–3985Google Scholar
  93. Montaldo V, Meletti C (2007) Valutazione del valore della ordinata spettrale a 1 sec e ad altri periodi di interesse ingegneristico. Project DPC-INGV S1, deliverable D3 (in Italian). Istituto Nazionale di Geofisica e Vulcanologia—Sezione di Milano-Pavia. Accessed 10 June 2018
  94. Montaldo V, Faccioli E, Zonno G, Akinci A, Malagnini L (2005) Treatment of ground-motion predictive relationships for the reference seismic hazard map of Italy. J Seismol 9(3):295–316Google Scholar
  95. Mulargia F, Gasperini P, Tinti S (1987) Contour mapping of Italian seismicity. Tectonophysics 142:203–216Google Scholar
  96. NTC (2008) Norme Tecniche per le Costruzioni. Gazzetta Ufficiale 29, 4 Feb 2008Google Scholar
  97. NTC (2018) Norme Tecniche per le Costruzioni, D.M. Infrastrutture Trasporti 17 gennaio 2018, G.U. 20 febbraio 2018 n. 42 - Suppl. OrdGoogle Scholar
  98. Ornthammarath T, Warnitchai P, Worakanchana K et al (2011) Probabilistic seismic hazard assessment for Thailand. Bull Earthq Eng 9(2):367–394Google Scholar
  99. Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66(6):514–530Google Scholar
  100. Pace B, Peruzza L, Lavecchia G, Boncio P (2002) Seismogenic sources in Central Italy: from causes to effects. Mem Soc Geol Ital 57:419–429Google Scholar
  101. Pace B, Peruzza L, Lavecchia G, Boncio P (2006) Layered seismogenic source model and probabilistic seismic-hazard analyses in central Italy. Bull Seismol Soc Am 96(1):107–132Google Scholar
  102. Pace B, Visini F, Peruzza L (2016) FiSH: MATLAB tools to turn fault data into seismic-hazard models. Seismol Res Lett 87(2A):374–386. Google Scholar
  103. Pacor F, Paolucci R, Ameri G, Massa M, Puglia R (2011) Italian strong motion records in ITACA: overview and record processing. Bull Earth Eng 9(6):1741–1759Google Scholar
  104. Pantosti D, Valensise G (1988) La faglia sud-appenninica: identificazione oggettiva di un lineamento sismogenetico nell’Appennino meridionale. In: Proceedings 7° meeting G.N.G.T.S., Rome, pp 205–220Google Scholar
  105. Parra H, Benito MB, Gaspar-Escribano JM (2016) Seismic hazard assessment in continental Ecuador. Bull Earthq Eng 14(8):2129–2159Google Scholar
  106. Peruzza L, Pace B (2002) Sensitivity analysis for seismic source characteristics to probabilistic seismic hazard assessment in central Apennines (Abruzzo area). Boll Geofis Teor Appl 43:79–100Google Scholar
  107. Peruzza L, Pace B, Cavallini F (2010) Error propagation in time-dependent probability of occurrence for characteristic earthquakes in Italy. J Seismol 14(1):119–141Google Scholar
  108. Pino NA, Palombo B, Ventura G, Perniola B, Ferrari G (2008) Waveform modeling of historical seismograms of the 1930 Irpinia earthquake provides insight on ‘blind’ faulting in Southern Apennines (Italy). J Geophys Res. Google Scholar
  109. Ricci P, Verderame GM, Manfredi G (2011) Analytical investigation of elastic period of infilled RC MRF buildings. Eng Struct 33(2):308–319Google Scholar
  110. Romeo R, Pugliese A (2000) Seismicity, seismotectonics and seismic hazard of Italy. Eng Geol 55(4):241–266Google Scholar
  111. Romeo R, Paciello A, Rinaldis D (2000) Seismic hazard maps of Italy including site effects. Soil Dyn Earthq Eng 20(1–4):85–92Google Scholar
  112. Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the parametric catalogue of Italian earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. Accessed 24 Mar 2017
  113. Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86(2):337–352Google Scholar
  114. Sesetyan K, Demircioglu MB, Duman TY et al (2016) A probabilistic seismic hazard assessment for the Turkish territory—part I: the area source model. Bull Earthq Eng 16(8):3367–3397Google Scholar
  115. Seyhan E, Stewart JP (2014) Semi-empirical nonlinear site amplification from NGAWest2 data and simulations. Earthq Spectra 30(3):1241–1256Google Scholar
  116. Seyhan E, Stewart JP, Ancheta TD, Darragh RB, Graves RW (2014) NGA-West2 site database. Earthq Spectra 30(3):1007–1024Google Scholar
  117. Slejko D, Peruzza L, Rebez A (1998) The seismic hazard maps of Italy. Ann Geophys 41(2):183–214Google Scholar
  118. Slejko D, Camassi R, Cecic I et al (1999) Seismic hazard assessment of Adria. Ann Geophys 42(6):1085–1107Google Scholar
  119. Sokolov V, Zahran HM, Youssef SEH et al (2017) Probabilistic seismic hazard assessment for Saudi Arabia using spatially smoothed seismicity and analysis of hazard uncertainty. Bull Earthq Eng 15(7):2695–2735Google Scholar
  120. Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of first microzonation conference, Seattle, USA, pp 897–909Google Scholar
  121. Stucchi M, Albini P, Mirto C, Rebez A (2004) Assessing the completeness of Italian historical earthquake data. Ann Geophys 47(2/3):659–673Google Scholar
  122. Stucchi M, Meletti C, Montaldo V, Crowley H, Calvi GM, Boschi E (2011) Seismic hazard assessment (2003–2009) for the Italian building code. Bull Seismol Soc Am 101(4):1885–1911Google Scholar
  123. Valensise G, Pantosti D (2001) Database of potential sources for earthquakes larger than M 5.5 in Italy. Ann Geophys 44(4):797–964 (with CD-Rom) Google Scholar
  124. Vanini M, Corigliano M, Faccioli E, Figini R, Luzi L, Pacor F, Paolucci R (2018) Improving seismic hazard approaches for critical infrastructures: a pilot study in the Po Plain. Bull Earthq Eng 16(6):2529–2564Google Scholar
  125. Vannoli P, Burrato P, Valensise G (2015) The seismotectonic of the Po Plain (northern Italy): tectonic diversity in a blind faulting domain. Pure appl Geophys 172(5):1105–1142Google Scholar
  126. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002Google Scholar
  127. Westaway R (1993) Fault rupture geometry for the 1980 Irpinia earthquake: a working hypothesis. Ann Geophys 36(1):51–69Google Scholar
  128. Woessner J, Laurentiu D, Giardini D et al (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596Google Scholar
  129. Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75(4):939–964Google Scholar
  130. Zimmaro P, Stewart JP (2017) Site-specific seismic hazard analysis for Calabrian dam site using regionally customized seismic source and ground motion models. Soil Dyn Earthq Eng 94:179–192Google Scholar
  131. Zöller G, Holschneider M, Hainzl S (2013) The maximum earthquake magnitude in a time horizon: theory and case studies. Bull Seismol Soc Am 103(2A):860–875Google Scholar
  132. Zuccolo E, Corigliano M, Lai CG (2013) Probabilistic seismic hazard assessment of Italy using kernel estimation methods. J Seismol 17(3):1001–1020Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Hossein Ebrahimian
    • 1
  • Fatemeh Jalayer
    • 1
    Email author
  • Giovanni Forte
    • 2
  • Vincenzo Convertito
    • 3
  • Valeria Licata
    • 4
  • Anna d’Onofrio
    • 2
  • Antonio Santo
    • 2
  • Francesco Silvestri
    • 2
  • Gaetano Manfredi
    • 1
  1. 1.Department of Structures for Engineering and Architecture (DIST)University of Naples Federico IINaplesItaly
  2. 2.Department of Civil, Environmental and Architectural Engineering (DICEA)University of Naples Federico IINaplesItaly
  3. 3.Istituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio VesuvianoNaplesItaly
  4. 4.Anas SpARomeItaly

Personalised recommendations