Advertisement

REASSESS V2.0: software for single- and multi-site probabilistic seismic hazard analysis

  • Eugenio Chioccarelli
  • Pasquale Cito
  • Iunio Iervolino
  • Massimiliano Giorgio
Original Research

Abstract

Probabilistic seismic hazard analysis (PSHA) is generally recognized as the rational method to quantify the seismic threat. Classical formulation of PSHA goes back to the second half of the twentieth century, but its implementation can still be demanding for engineers dealing with practical applications. Moreover, in the last years, a number of developments of PSHA have been introduced; e.g., vector-valued and advanced ground motion intensity measure (IM) hazard, the inclusion of the effect of aftershocks in single-site hazard assessment, and multi-site analysis requiring the characterization of random fields of cross-correlated IMs. Although software to carry out PSHA has been available since quite some time, generally, it does not feature a user-friendly interface and does not embed most of the recent methodologies relevant from the earthquake engineering perspective. These are the main motivations behind the development of the practice-oriented software presented herein, namely REgionAl, Single-SitE and Scenario-based Seismic hazard analysis (REASSESS V2.0). In the paper, the seismic hazard assessments REASSESS enables are discussed, along with the implemented algorithms and the models/databases embedded in this version of the software. Illustrative applications exploit the potential of the tool, which is available at http://wpage.unina.it/iuniervo/doc_en/REASSESS.htm.

Keywords

Performance-based earthquake engineering Performance-based seismic design Sequence-based probabilistic seismic hazard analysis Spectral-shape-based intensity measures Infrastructure risk analysis Conditional spectra 

Notes

Acknowledgements

The work presented in this paper was developed within the AXA-DiSt (Dipartimento di Strutture per l’Ingegneria e l’Architettura, Universita` degli Studi di Napoli Federico II) 2014–2017 research program, funded by AXA-Matrix Risk Consultants, Milan, Italy. The H2020-MSCA-RISE-2015 research project EXCHANGE-Risk (Grant Agreement No. 691213) and ReLUIS (Rete dei Laboratori Universitari di Ingegneria Sismica) are also acknowledged.

References

  1. Aki K, Richards P (1980) Quantitative seismology: theory and methods. Freeman, San FranciscoGoogle Scholar
  2. Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81:195–206CrossRefGoogle Scholar
  3. Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25:371–400CrossRefGoogle Scholar
  4. Baker JW (2007) Probabilistic structural response assessment using vector-valued intensity measures. Earthq Eng Struct Dyn 36:1861–1883CrossRefGoogle Scholar
  5. Baker JW, Cornell CA (2006a) Spectral shape, epsilon and record selection. Earthq Eng Struct Dyn 35:1077–1095CrossRefGoogle Scholar
  6. Baker JW, Cornell CA (2006b) Vector-valued ground motion intensity measures for probabilistic seismic demand analysis. PEER Technical Report, Pacific Earthquake Engineering Research Center, Berkeley, CA, USAGoogle Scholar
  7. Baker JW, Jayaram N (2008) Correlation of spectral acceleration values from NGA ground motion models. Earthq Spectra 24:299–317CrossRefGoogle Scholar
  8. Barani S, Spallarossa D, Bazzurro P (2009) Disaggregation of probabilistic ground-motion hazard in Italy. Bull Seismol Soc Am 99:2638–2661CrossRefGoogle Scholar
  9. Bazzurro P, Cornell CA (1999) Disaggregation of seismic hazard. Bull Seismol Soc Am 89:501–520Google Scholar
  10. Bazzurro P, Cornell CA (2002) Vector-valued probabilistic seismic hazard analysis (VPSHA). In: Proceedings of the 7th US national conference on earthquake engineering, Boston, MA, USAGoogle Scholar
  11. Bender B, Perkins DM (1987) Seisrisk III: a computer program for seismic hazard estimation. US Geol Surv Bull 1772.  https://doi.org/10.3133/b1772
  12. Bianchini M, Diotallevi P, Baker JW (2009) Prediction of inelastic structural response using an average of spectral accelerations. In: Proceedings of the 10th international conference on structural safety and reliability (ICOSSAR 09), Osaka, JapanGoogle Scholar
  13. Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R (2011) Ground motion prediction equations derived from the Italian strong motion database. Bull Earthq Eng 9(6):1899–1920CrossRefGoogle Scholar
  14. Bojórquez E, Iervolino I (2011) Spectral shape proxies and nonlinear structural response. Soil Dyn Earthq Eng 31(7):996–1008CrossRefGoogle Scholar
  15. Bommer JJ, Douglas J, Strasser FO (2003) Style-of-faulting in ground-motion prediction equations. Bull Earthq Eng 1:171–203CrossRefGoogle Scholar
  16. Boyd OS (2012) Including foreshocks and aftershocks in time-independent probabilistic seismic-hazard analyses. Bull Seismol Soc Am 102:909–917CrossRefGoogle Scholar
  17. Bradley BA (2012) Empirical correlations between peak ground velocity and spectrum-based intensity measures. Earthq Spectra 28:17–35CrossRefGoogle Scholar
  18. Cauzzi C, Faccioli E, Vanini M, Bianchini A (2015) Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthq Eng 13:1587–1612CrossRefGoogle Scholar
  19. Chioccarelli E, Cito P, Iervolino I (2018) Disaggregation of sequence-based seismic hazard. In: Proceedings of the 16th European conference on earthquake engineering (16ECEE), Thessaloniki, GreeceGoogle Scholar
  20. Convertito V, Emolo A, Zollo A (2006) Seismic-hazard assessment for a characteristic earthquake scenario: an integrated probabilistic-deterministic method. Bull Seismol Soc Am 96:377–391CrossRefGoogle Scholar
  21. Cordova PP, Deierlein GG, Mehanny SS, Cornell CA (2000) Development of a two-parameter seismic intensity measure and probabilistic assessment procedure. In: Proceedings of the second US-Japan workshop on performance-based earthquake engineering methodology for reinforced concrete building structures, Sapporo, Hokkaido, JapanGoogle Scholar
  22. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606Google Scholar
  23. Cornell CA, Krawinkler H (2000) Progress and challenges in seismic performance assessment. PEER Center News 3(2):1–3Google Scholar
  24. Danciu L, Monelli D, Pagani M, Wiemer S (2010) GEM1 hazard: review of PSHA software. GEM Technical Report 2010-2, GEM Foundation, PaviaGoogle Scholar
  25. Douglas J (2014) Fifty years of ground-motion models. In: Proceedings of 2nd European conference on earthquake engineering and seismology (2ECEES), Istanbul, TurkeyGoogle Scholar
  26. Eberhart-Phillips D (1998) Aftershocks sequence parameters in New Zeland. Bull Seismol Soc Am 88(4):1095–1097Google Scholar
  27. Eguchi RT (1991) Seismic hazard input for lifeline systems. Struct Saf 10:193–198CrossRefGoogle Scholar
  28. El-Hussain I, Deif A, Al-Jabri K, Toksoz N, El-Hady S, Al-Hashmi S, Al-Toubi K, Al-Shijbi Y, Al-saifi M, Kuleli S (2012) Probabilistic seismic hazard maps for Sultanate of Oman. Nat Haz 64:173–210CrossRefGoogle Scholar
  29. Esposito S, Iervolino I (2012) Spatial correlation of spectral acceleration in European data. Bull Seismol Soc Am 102(6):2781–2788CrossRefGoogle Scholar
  30. Eurocode 8 (2004). Design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings, EN 1998-1. European Committee for Standardization (CEN). Bruxelles, BelgiumGoogle Scholar
  31. Field EH, Jordan TH, Cornell CA (2003) OpenSHA: a developing community-modeling environment for seismic hazard analysis. Seismol Res Lett 74(4):406–419CrossRefGoogle Scholar
  32. Fox MJ, Stafford PJ, Sullivan TJ (2016) Seismic hazard disaggregation in performance-based earthquake engineering: occurrence or exceedance? Earthq Eng Struct Dyn 45:835–842CrossRefGoogle Scholar
  33. Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367Google Scholar
  34. Giardini D, Danciu L, Erdik M, Sesetyan K, Tumsa MBD, Akkar S, Gulen L, Zare M (2018) Seismic hazard map of Middle East. Bull Earth Eng 16(8):3567–3570CrossRefGoogle Scholar
  35. Giorgio M, Iervolino I (2016) On multisite probabilistic seismic hazard analysis. Bull Seismol Soc Am 106(3):1223–1234CrossRefGoogle Scholar
  36. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):1985–1988Google Scholar
  37. Iervolino I (2016) Soil-invariant seismic hazard and disaggregation. Bull Seismol Soc Am 106(4):1900–1907CrossRefGoogle Scholar
  38. Iervolino I, Giorgio M, Galasso C, Manfredi G (2010) Conditional hazard maps for secondary intensity measures. Bull Seismol Soc Am 100:3312–3319CrossRefGoogle Scholar
  39. Iervolino I, Chioccarelli E, Convertito V (2011) Engineering design earthquakes from multimodal hazard disaggregation. Soil Dyn Earthq Eng 31:1212–1231CrossRefGoogle Scholar
  40. Iervolino I, Giorgio M, Polidoro B (2014) Sequence-based probabilistic seismic hazard analysis. Bull Seismol Soc Am 104(2):1006–1012CrossRefGoogle Scholar
  41. Iervolino I, Chioccarelli E, Cito P (2016a) REASSESS V1.0: A computationally-efficient software for probabilistic seismic hazard analysis. In: Proceedings of the 7th European congress on computational methods in applied sciences and engineering (ECCOMAS), Crete, GreeceGoogle Scholar
  42. Iervolino I, Baltzopoulos G, Chioccarelli E (2016b) Case study: definition of design seismic actions in near-source conditions for an Italian site. Deliverable D9, DPC-Reluis 2015—RS2 Project—numerical simulations of earthquakes and near source effects, Rete dei Laboratori Universitari di Ingegneria Sismica, Naples, ItalyGoogle Scholar
  43. Iervolino I, Chioccarelli E, Giorgio M (2018) Aftershocks’ effect on structural design actions in Italy. Bull Seismol Soc Am 108(4):2209–2220Google Scholar
  44. Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  45. Lin T, Harmsen SC, Baker JW, Luco N (2013) Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models. Bull Seismol Soc Am 103:1103–1116CrossRefGoogle Scholar
  46. Lolli B, Gasperini P (2003) Aftershocks hazard in Italy part I: estimation of time-magnitude distribution model parameters and computation of probabilities of occurrence. J Seismol 7(2):235–257CrossRefGoogle Scholar
  47. Loth C, Baker JW (2013) A spatial cross-correlation model of spectral accelerations at multiple periods. Earthq Eng Struct Dyn 42(3):397–417CrossRefGoogle Scholar
  48. Mai PM, Spudich P, Boatwright J (2005) Hypocenter locations in finite-source rupture models. Bull Seismol Soc Am 95(3):965–980CrossRefGoogle Scholar
  49. Markhvida M, Ceferino L, Baker JW (2018) Modeling spatially correlated spectral accelerations at multiple periods using principal component analysis and geostatistics. Earthq Eng Struct Dyn 47(5):1107–1123CrossRefGoogle Scholar
  50. Marzocchi W, Taroni M (2014) Some thoughts on declustering in probabilistic seismic-hazard analysis. Bull Seismol Soc Am 104(4):1838–1845CrossRefGoogle Scholar
  51. McGuire RK (1976) FORTRAN computer program for seismic risk analysis. US Geological Survey Open-File Rept: 76–67.  https://doi.org/10.3133/ofr7667
  52. McGuire RK (1995) Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bull Seismol Soc Am 85(5):1275–1284Google Scholar
  53. McGuire RK (2004) Seismic hazard and risk analysis. Earthquake Engineering Research Institute, Oakland, CAGoogle Scholar
  54. Meletti C, Galadini F, Valensise G, Stucchi M, Basili R, Barba S, Vannucci G, Boschi E (2008) A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450:85–108CrossRefGoogle Scholar
  55. Montaldo V, Faccioli E, Zonno G, Akinci A, Malagnini L (2005) Threatment of ground motion predictive relationships for the reference seismic hazard map of Italy. J Seismol 9(3):295–316CrossRefGoogle Scholar
  56. Nath SK, Thingbaijam KKS (2012) Probabilistic seismic hazard assessment of India. Seismol Res Lett 83(1):135–149CrossRefGoogle Scholar
  57. Ordaz M, Martinelli F, D’Amico V, Meletti C (2013) CRISIS2008: a flexible tool to perform probabilistic seismic hazard assessment. Seismol Res Lett 84(3):495–504CrossRefGoogle Scholar
  58. Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V et al (2014) OpenQuake-engine: an open hazard (and risk) software for the global earthquake model. Seismol Res Lett 85:692–702CrossRefGoogle Scholar
  59. Reasenberg PA, Jones LM (1989) Earthquake hazard after a mainshock in California. Science 243:1173–1175CrossRefGoogle Scholar
  60. Reasenberg PA, Jones LM (1994) Earthquake aftershocks: update. Science 265:1251–1252CrossRefGoogle Scholar
  61. Reiter L (1990) Earthquake hazard analysis: issues and insights. Columbia University Press, New York, NYGoogle Scholar
  62. Scherbaum F, Schmedes J, Cotton F (2004) On the conversion of source-to-site distance measures for extended earthquake source models. Bull Seismol Soc Am 94(3):1053–1069CrossRefGoogle Scholar
  63. Stafford PJ, Rodriguez-Marek A, Edwards B, Kruiver PP, Bommer JJ (2017) Scenario dependence of linear site-effect factors for short-period response spectral ordinates. Bull Seismol Soc Am 107(6):2859–2872CrossRefGoogle Scholar
  64. Stucchi M, Meletti C, Montaldo V, Crowley H, Calvi GM, Boschi E (2011) Seismic hazard assessment (2003–2009) for the Italian building code. Bull Seismol Soc Am 101(4):1885–1911CrossRefGoogle Scholar
  65. Ullah S, Bindi D, Pilz M, Danciu L, Weatherill G, Zuccolo E, Ischuk A, Mikhailova NN, Abdrakhma-tov K, Parolai S (2015) Probabilistic seismic hazard assessment for Central Asia. Ann Geophys 58(1):S0103Google Scholar
  66. Utsu T (1970) Aftershocks and earthquake statistics (1): some parameters which characterize an aftershock sequence and their interrelations. J Fac Sci Hokkaido Univ Ser 7 Geophys 3:129–195Google Scholar
  67. Wells DL, Coppersmith KJ (1994) New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002Google Scholar
  68. Woessner J, Laurentiu D, Giardini D et al (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596CrossRefGoogle Scholar
  69. Yeo GL, Cornell CA (2009) A probabilistic framework for quantification of aftershock ground-motion hazard in California: methodology and parametric study. Earthq Eng Struct Dyn 38:45–60CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Università Telematica PegasoNaplesItaly
  2. 2.Dipartimento di Strutture per l’Ingegneria e l’ArchitetturaUniversità degli Studi di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di IngegneriaUniversità degli Studi della Campania Luigi VanvitelliAversaItaly

Personalised recommendations