Advertisement

Bulletin of Earthquake Engineering

, Volume 16, Issue 5, pp 1961–1985 | Cite as

Innovative timber building systems: comparative testing and modelling of earthquake behaviour

  • C. SandhaasEmail author
  • P. Schädle
  • Ario Ceccotti
Original Research Paper
  • 305 Downloads

Abstract

Several innovative timber building systems were developed in the past few years, among which dowel-laminated timber, CLT with interspaces and prefabricated timber wall elements, whose design requires also verification of the lateral load-carrying system. Therefore, shear wall tests on these three building systems were carried out. Timber frame shear walls were also tested to compare load–displacement behaviour, failure modes and energy dissipation capacity. The four investigated systems exhibit similar shapes for load–displacement curves albeit reaching different stiffness and capacity values. Based on the test results, 2D models of shear walls and a case study building were developed in order to investigate the seismic behaviour of the discussed timber building systems. The hysteretic behaviour of the shear walls and of the case study building was assigned to non-linear hysteretic springs. The building models were then subject to accelerograms whose intensities were increased until the near-collapse state was reached. Via these nonlinear dynamic simulations in the time domain, design behaviour factors valid for force-based seismic design were established. Based only on a few common tests on shear walls, a general statement regarding the seismic behaviour of novel systems can be given using this procedure. The three investigated innovative timber building systems proved to be suitable for the use in seismic active areas and can cover the same application range as conventional timber frame buildings.

Keywords

Timber construction systems Shear walls Earthquake behaviour Nonlinear dynamic modelling 

Notes

Acknowledgements

The DLT project was financed by the German Federal Ministry for Economic Affairs and Energy within the “ZIM”-programme (Central innovation programme for small and medium-sized enterprises) under grant IDs KF2007011US2, KF2007003RH8 and KF0352101K6. Cooperating partners were Kaufmann GmbH (DLT), Lignotrend GmbH (CLTi) and Holz-Isolier-Bau GmbH (PFTE), respectively.

References

  1. ASCE/SEI 41-13 (2014) Seismic evaluation and retrofit of existing buildings. American Society of Civil Engineers, RestonGoogle Scholar
  2. Blaß HJ, Schädle P (2009) Aussteifende Wände in Einzelelement-Bauweise. Karlsruher Berichte zum Ingenieurholzbau Band 13. University of Karlsruhe, Germany. ISBN 978-3-86644-334-1Google Scholar
  3. Blaß HJ, Schädle P (2011) Verhalten einer Massviholzbauweise unter Erdbebenlasten. Karlsruher Berichte zum Ingenieurholzbau Band 18. Karlsruhe Institute of Technology, Germany. ISBN 978-3-86644-721-9Google Scholar
  4. Ceccotti A (2008) New technologies for construction of medium-rise buildings in seismic regions: the X-lam case. Struct Eng Int 18(2):156–165.  https://doi.org/10.2749/101686608784218680 CrossRefGoogle Scholar
  5. Ceccotti A, Karacabeyli E (2002) Validation of seismic design parameters for wood-frame shearwall systems. Can J Civil Eng 29(3):484–498.  https://doi.org/10.1139/l02-026 CrossRefGoogle Scholar
  6. Ceccotti A, Sandhaas C (2010) A proposal for a standard procedure to establish the seismic behaviour factor q of timber buildings. In: 11th World conference of timber engineering WCTE, Riva del Garda, ItalyGoogle Scholar
  7. Ceccotti A, Vignoli A (1989) A hysteretic behavioural model for semi-rigid joints. Eur Earthq Eng 3:3–9Google Scholar
  8. Ceccotti A, Sandhaas C, Okabe M, Yasumura M, Minowa C, Kawai N (2013) SOFIE project-3D shaking table test on a seven-storey full-scale cross-laminated timber building. Earthq Eng Struct Dyn 42(13):2003–2021.  https://doi.org/10.1002/eqe.2309 CrossRefGoogle Scholar
  9. Christovasilis IP, Filiatrault A, Constantinou MC, Wanitworkul A (2009) Incremental dynamic analysis of woodframe buildings. Earthq Eng Struct Dyn 38(4):477–496.  https://doi.org/10.1002/eqe.864 CrossRefGoogle Scholar
  10. Dolan JD (1989) The dynamic response of timber shear walls. Dissertation, University of British Columbia, Vancouver, CanadaGoogle Scholar
  11. Draft ISO/CD 21581 (2007) Timber structures—static and cyclic lateral test method for shear walls. International Organization for Standardization, GenevaGoogle Scholar
  12. Dujic B, Aicher S, Zarnic R (2005) Investigations onn in-plane loaded wooden elements-influence of loading and boundary conditions. Otto-Graf-J 16:259–272Google Scholar
  13. EN 12512 (2001) Timber structures—test methods—cyclic testing of joints made with mechanical fasteners. Comité Européen de Normalisation (CEN), Brussels, BelgiumGoogle Scholar
  14. EN 1995 1-1 (2010) Eurocode 5. Design of timber structures—Part 1-1: General—common rules and rules for buildings. Comité Européen de Normalisation (CEN), Brussels, BelgiumGoogle Scholar
  15. EN 1998-1 (2010) Eurocode 8. Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings. Comité Européen de Normalisation (CEN), Brussels, BelgiumGoogle Scholar
  16. EN 26891 (1991) Timber structures—joints made with mechanical fasteners—General principles for the determination of strength and deformation characteristics (ISO 6891). Comité Européen de Normalisation (CEN), Brussels, BelgiumGoogle Scholar
  17. Foliente GC (1995) Hysteresis modeling of wood joints and structural systems. J Struct Eng 121(6):1013–1022.  https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(1013) CrossRefGoogle Scholar
  18. Folz B, Filiatrault A (2004) Blind predictions of the seismic response of a woodframe house: an international benchmark study. Earthq Spectra 20(3):825–851.  https://doi.org/10.1193/1.1774989 CrossRefGoogle Scholar
  19. Gagnon S, Pirvu C (2011) CLT handbook. FP Innovations, QuébecGoogle Scholar
  20. Krämer V (2003) Trag- und Verformungsverhalten genagelter Brettstapelelemente unter Querlast. Dissertation, Universität Karlsruhe (TH), GermanyGoogle Scholar
  21. Lignotrend Produktions GmbH (2007) Musterstatik Wandscheibe: Wand mit LIGNO Fux 4SGoogle Scholar
  22. Meskouris K, Hinzen KG, Butenweg C, Mistler M (2007) Bauwerke und Erdbeben: Grundlagen–Anwendungen–Beispiele. Vieweg Verlag, Wiesbaden, 2. Auflage. ISBN 978-3-8348-0779-3Google Scholar
  23. Pei S, Popovski M, Van De Lindt JW (2012) Seismic design of a multi-storey cross laminated timber building based on component level testing. In: 12th World conference of timber engineering WCTE. Auckland, New ZealandGoogle Scholar
  24. Pozza L (2013) Ductility and behaviour factor of wood structural systems. Dissertation, Università degli Studi di Padova, Padua, ItalyGoogle Scholar
  25. Pozza L, Trutalli D (2017) An analytical formulation of q-factor for mid-rise CLT buildings based on parametric numerical analyses. Bull Earthq Eng 15(5):2015–2033.  https://doi.org/10.1007/s10518-016-0047-9 CrossRefGoogle Scholar
  26. Pozza L, Scotta R, Trutalli D, Polastri A, Ceccotti A (2014) Effects of design criteria on an experimentally-based evaluation of the behaviour factor of novel massive wooden shear walls. CIB-W18 Meeting 47, Paper 47-15-5. Bath, UK, pp 281–294Google Scholar
  27. Prakash V, Powell GH (1993) DRAIN-2DX, DRAIN-3DX and DRAIN BUILDING: base program design documentation. Department of Civil Engineering, University of California, BerkeleyGoogle Scholar
  28. Sandhaas C, Blaß HJ (2016) Statisches und dynamisches Verhalten von aussteifenden Wandscheiben in Brettstapelbauweise. Karlsruher Berichte zum Ingenieurholzbau Band 30. Karlsruhe Institute of Technology, Germany. ISBN 978-3-7315-0459-7Google Scholar
  29. Schädle P (2012) Innovative Wandbausysteme aus Holz unter Erdbebeneinwirkungen. Dissertation, Karlsruhe Institute of Technology, Germany. ISBN 978-3-86644-832-2Google Scholar
  30. Schänzlin J (2003) Zum Langzeitverhalten von Brettstapel-Beton-Verbunddecken. Dissertation, Universität Stuttgart, GermanyGoogle Scholar
  31. Seim W, Kramar M, Pazar T, Vogt T (2011) OSB and GFB as sheating materials for timber framed shear walls—a comparative study of seismic resistance. ASCE J Struct Eng 142(4):E4015004.  https://doi.org/10.1061/(ASCE)ST.1943-541X.0001293 CrossRefGoogle Scholar
  32. Stewart WG (1987) The seismic design of plywood sheathed shearwalls. Dissertation, University of Canterbury, New Zealand. http://hdl.handle.net/10092/2458
  33. Van De Lindt JW, Pei SL, Pryor SE, Shimizu H, Isoda H (2010) Experimental seismic response of a full-scale six-story light-frame wood building. ASCE J Struct Eng 136(10):1262–1272.  https://doi.org/10.1061/(Asce)St.1943-541x.0000222 CrossRefGoogle Scholar
  34. Wang Y, Rosowsky DV, Pang W (1995) Hysteresis modeling of wood joints and structural systems. J Struct Eng 136(8):978–988.  https://doi.org/10.1061/(ASCE)ST.1943-541X.0000188,978-988 CrossRefGoogle Scholar
  35. Winter S, Kreuzinger H, Mestek P (n. d.) Flächen aus Brettstapeln, Brettsperrholz und Verbundkonstruktionen. Holzbau der Zukunft, Teilprojekt 15. Technische Universität München, GermanyGoogle Scholar
  36. Z-9.1-677 (2007) HIB-Holzelement-Bauweise. German technical approval. Deutsches Institut für Bautechnik, Berlin, GermanyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology, Timber Structures and Building ConstructionKarlsruheGermany
  2. 2.Ingenieurgruppe Bauen KarlsruheKarlsruheGermany
  3. 3.University of Venice IUAVVeniceItaly

Personalised recommendations