Skip to main content
Log in

Critical orientation of earthquake loading for building performance assessment using lateral force analysis

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The orientation of the seismic action is known to have a non-negligible effect on the seismic behaviour of buildings. However, modern earthquake-related standards only partially cover the effect of this factor and results of practical utility on this topic are still limited. To address this issue, a methodology enabling the determination of the critical angle of seismic incidence in the context of Lateral Force Analysis is proposed. The analytical methodology determines the critical angle of seismic incidence for the storey displacements and the interstorey drifts of buildings that conform with standard-based provisions for linear static analysis. The applicability of the methodology is illustrated for three buildings comprising different typologies in plan and in elevation. The accuracy of the analytical results obtained is validated by performing a parametric lateral force analysis of the buildings for different orientations of the bidirectional seismic action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

α, ASI:

Angle of seismic incidence

α01 :

Angle between the structural axis X and the optimum principal axis I opt

α02 :

α01 + 90°

αcrit, ASIcrit :

Critical angle of seismic incidence

β :

Percentile used for the percentage combination rule, 30 or 40%

θi,F :

Rotation about axis i due to F

λ:

Modal mass correction factor

ω:

Angle between the structural axis X and the principal axis I

ω :

Angle between the structural axis X and the fictitious principal axis I

A:

Arbitrary point on a diaphragm

ag :

Design ground acceleration on type A soil

CS :

Elastic centre

C S :

Fictitious elastic centre

dof/s:

Degree/s of freedom

F:

Module of force vector F

F “1” :

Unit force vector

f i :

Flexibility coefficient along axis i

\({\text{F}}_{\text{i,F}}^{\text{A}}\) :

Component of F along axis i applied on A

\(\underline{\text{f}}_{\text{i}} ,\underline{\text{m}}_{\text{i}}\) :

N-dimensional vector of forces and moments, respectively, along and about axis i

[F m F s]T :

Force vector acting on the master and on the slave dofs

\(\underline{\text{F}}_{\text{R}}\) :

Equivalent force vector acting on the master dofs

F R“1” :

Equivalent force vector of a unit force acting on the master dofs

I, II, III:

Principal axes

I, II, III :

Fictitious principal axes

I opt , II opt , III opt :

Optimum principal axes

ISDA :

Interstorey drift of point A

KI, KII, KIII :

Principal stiffness coefficients

K I , K II , K III :

Fictitious Principal stiffness coefficients

kI, kII, kIII :

Numerical coefficients associated with the principal directions of the torsionally coupled single storey system

Kij :

Stiffness matrix coefficients with i = X, Y, Z and j = X, Y, Z defined on (X, Y, Z)

kij :

Coefficients functions of kn with i = x, y, z and j = x, y, z defined on (X, Y, Z)

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\text{K}}_{\text{ij}}\) :

N × N stiffness matrix with i = x, y, z and j = x, y, z defined on (X, Y, Z)

\(\left[ {\begin{array}{*{20}c} {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{K}_{mm} } & {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{K}_{ms} } \\ {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{K}_{sm} } & {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{K}_{ss} } \\ \end{array} } \right]\) :

Stiffness matrix of a structure rearranged so that K mm is a matrix of the master dofs and K ss the matrix of the slave dofs

\({\text{k}}_{\text{n}}\) :

Numerical coefficient of isotropic buildings

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\text{K}}_{ 0}\) :

Stiffness matrix of order N of the N-storey plane frame

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\text{K}}_{\text{R}}\) :

Condensed stiffness matrix that corresponds to the master dofs

Kunc :

Uncoupled stiffness of the building

m:

Total mass of a building

Mi,F :

Moment about axis i due to F

N:

Number of storeys

O(X, Y, Z):

Coordinate system of three orthogonal axes X, Y, Z that intersect the diaphragm at point O

S:

Soil factor of the EC8 response spectrum

Se(T):

Elastic spectral acceleration at period T

TB, TC, TD :

Corner periods of the EC8 response spectrum

TI, TII :

Principal periods

T Iopt , T IIopt :

Optimum principal periods

Tunc :

Uncoupled fundamental period of vibration

T unc.opt :

Optimum uncoupled fundamental period of vibration

\({\text{u}}^{\text{A}}\) :

Resultant displacement of A

\({\text{u}}_{\text{i,F}}^{\text{A}}\) :

Displacement of A on axis i due to F

\(\underline{\text{u}}_{\text{i}} ,\underline{\uptheta}_{\text{i}}\) :

N-dimensional vector of displacements and rotations, respectively, along and about axis i

\(\left[ {\underline{\text{u}}_{\text{m}} \,\,\underline{\text{u}}_{\text{s}} } \right]^{\text{T}}\) :

Displacement vector of the master and the slave dofs

xA, yA :

Coordinates of A on the structural reference system

\({{\text{x}}_{\text{A}}}^{\prime}\), \({{\text{y}}_{\text{A}}}^{\prime }\) :

Coordinates of A on the principal reference system

\({{x}_{A}}^{\prime }\), \({{y}_{A}}^{\prime }\) :

Coordinates of A on the fictitious principal reference system

References

  • Anastassiadis K, Avramidis I, Panetsos P (2002) Concurrent design forces in structures under three-component orthotropic seismic excitation. Earthq Spectra 18(1):1–17

    Article  Google Scholar 

  • Anastassiadis K (1985) Caracteristiques elastiques spatiales des batiments a etages. Annales de l’ITBTP (No. 435)

  • Anastassiadis K (1989) Antiseismic structures, vol I. ZITI, Thessaloniki

    Google Scholar 

  • ASCE (2014) Seismic evaluation and retrofit of existing buildings (ASCE/SEI 41-13). American Society of Civil Engineers, Reston

    Book  Google Scholar 

  • Athanatopoulou AM (2005) Critical orientation of three correlated seismic components. Eng Struct 27(2):301–312

    Article  Google Scholar 

  • Athanatopoulou AM, Doudoumis IN (2008) Principal directions under lateral loading in multistorey asymmetric buildings. Struct Des Tall Spec Build 17(4):773–794

    Article  Google Scholar 

  • Athanatopoulou AM, Makarios T, Anastassiadis K (2006) Earthquake analysis of isotropic asymmetric multistorey buildings. Struct Des Tall Spec Build 15(4):417–443

    Article  Google Scholar 

  • Cantagallo C, Camata G, Spacone E (2015) Influence of ground motion selection methods on seismic directionality effects. Earthq Struct 8(1):185–204

    Article  Google Scholar 

  • CEN (2004) EN1998-1 Eurocode 8: design of structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings. European Committee for Standarization, Brussels

    Google Scholar 

  • CEN (2005) EN1998-3 Eurocode 8: design of structures for earthquake resistance, part 3: assessment and retrofitting of buildings. European Committee for Standarization, Brussels

    Google Scholar 

  • Doudoumis IN, Athanatopoulou AM (2008) Invariant torsion properties of multistorey asymmetric buildings. Struct Des Tall Spec Build 17(1):79–97

    Article  Google Scholar 

  • EAK (2003) Greek code for earthquake resistant design of structures. Ministry of Environment, Planning and Public Works, Athens

    Google Scholar 

  • Federal Emergency Management Agency (2012) Seismic performance assessment of buildings. FEMA P58 report, Washington, DC

  • Fontara IK, Konstantinos M, Kostinakis G, Manoukas G, Athanatopoulou AM (2015) Parameters affecting the seismic response of buildings under bi-directional excitation. Struct Eng Mech 53(5):957–979

    Article  Google Scholar 

  • Guyan RJ (1965) Reduction of stiffness and mass matrices. AIAA J 3(2):380

    Article  Google Scholar 

  • Kostinakis KG, Athanatopoulou AM, Avramidis IE (2013a) Evaluation of inelastic response of 3D single-story R/C frames under bi-directional excitation using different orientation schemes. Bull Earthq Eng 11(2):637–661

    Article  Google Scholar 

  • Kostinakis KG, Athanatopoulou AM, Tsiggelis VS (2013b) Effectiveness of percentage combination rules for maximum response calculation within the context of linear time history analysis. Eng Struct 56:36–45

    Article  Google Scholar 

  • Lagaros ND (2010) Multicomponent incremental dynamic analysis considering variable incident angle. Struct Infrastruct Eng 6(1–2):77–94

    Article  Google Scholar 

  • Lopez OA, Chopra AK, Hernandez JJ (2001) Evaluation of combination rules for maximum response calculation in multicomponent seismic analysis. Earthq Eng Struct Dyn 30(9):1379–1398

    Article  Google Scholar 

  • MacRae AG, Mattheis J (2000) Three-dimentional steel building response to near-fault motions. J Struct Eng ASCE 126(1):117–126

    Article  Google Scholar 

  • Magliulo G, Maddaloni G, Petrone C (2014) Influence of earthquake direction on the seismic response of irregular plan RC frame buildings. Earthq Eng Eng Vib 13(2):243–256

    Article  Google Scholar 

  • Makarios TK, Anastassiadis K (1998) Real and fictitious elastic axes of multi-storey buildings: theory. Struct Des Tall Spec Build 7(1):33–55

    Article  Google Scholar 

  • Maple 18 (2002) Maplesoft, a Division of Waterloo Maple Inc. Waterloo, Ontario

  • Marino EM, Rossi PP (2004) Exact evaluation of the location of the optimum torsion axis. Struct Des Tall Spec Build 13(4):277–290

    Article  Google Scholar 

  • McKenna F, Fenves GL, Jeremic B, Scott MH (2000) Open system for earthquake engineering simulation. http://opensees.berkeley.edu/

  • Menun C, Der Kiureghian A (1998) A Replacement for the 30%, 40%, and SRSS rules for multicomponent seismic analysis. Earthq Spectra 14(1):153–163

    Article  Google Scholar 

  • Morfidis KE, Athanatopoulou AM, Avramidis IE (2008) Effects of seismic directivity within the framework of the lateral force procedure. In: 14th World conference on earthquake engineering. Beijing, China

  • Newmark N (1975) Seismic design criteria for structures and facilities: trans-Alaska pipeline system. In: U.S. National conference in earthquake engineering. Ann Arbor, Michigan

  • NTC (2008) Norme tecniche per le costruzioni. Decreto del Ministero delle Infrastrutture. Supplemento ordinario n.30 alla Gazzetta Ufficiale della Repubblica Italiana n.29 del 4/02/2008, Italy (in Italian)

  • Palermo M, Silvestri S, Gasparini G, Trombetti T (2013) Physically-based prediction of the maximum corner displacement magnification of one-storey eccentric systems. Bull Earthq Eng 11(5):1467–1491

    Article  Google Scholar 

  • Penzien J, Watabe M (1975) 3-Dimensional earthquake ground motions. Earthq Eng Struct Dyn 3(4):365–373

    Article  Google Scholar 

  • Regulatory Guide 1.92 (2006) U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Washington, DC

  • Riddel R, Vasquez J (1984) Existence of centers of resistance and torsional uncoupling of earthquake response of buildings. In: 8th World conference on earthquake engineering. San Francisco, USA, pp 187–194

  • Rigato AB, Medina RA (2007) Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions. Eng Struct 29(10):2593–2601

    Article  Google Scholar 

  • Rosenblueth E, Contreras H (1977) Approximate design for multi-component earthquakes. J Eng Mech Div 103(5):881–893

    Google Scholar 

  • Roussopoulos A (1932) Distribution of horizontal forces by a rigid plate in spatial structures: case of seismic forces, their distribution and regime. Tech Chron Tech Chamb Greece 17:871–884 (In Greek)

    Google Scholar 

  • Toranzo-Diandera LA (2009) Evaluation of the ASCE 41 linear elastic procedure for seismic retrofit of existing structures: pros and cons of the method. In: ATC & SEI 2009 conference on improving the seismic performance of existing buildings and other structures. San Francisco, California, pp 85–91

  • Wilson EL, Suharwardy I, Habibullah A (1995) A clarification of the orthogonal effects in a three-dimensional seismic analysis. Earthq Spectra 11(4):659–666

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of the Portuguese Foundation for Science and Technology, through the Ph.D. Grant of the first author (PD/BD/113681/2015), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despoina Skoulidou.

Appendix: Derivation of the piecewise expression for the final demand

Appendix: Derivation of the piecewise expression for the final demand

The terms F(α) and F(α + 90°) included in the expression of the final demand, which is expressed by Eq. (15) (for buildings with a real elastic axis), Eq. (28) (for buildings without a real elastic axis) and Eq. (30) (for the ISD), depend on the corner periods TB and TC of the response spectrum and on the principal periods of the structure TI and TII. As a result, the referred equations may have different forms according to the following scenarios:

  • TB ≤ TII and TI ≤ TC—In this case all Tunc(α) fall on the horizontal branch of the spectrum and the spectral acceleration Se is constant for all angles α. Therefore, F(α) and F(α + 90°) obtained from Eq. (11) are also constant and equal to Fconst for all angles α. Equations (15), (28) and (30) have one branch in which the base shear can be omitted in the maximization procedure since it is not a function of the angle α. For example, Eq. (15) has the following form:

    $${\text{u}}^{\text{A}} ( {{\upalpha )}} = {\text{F}}^{ 2}_{\text{const}} \cdot \sqrt {\left( {{\text{u}}_{\text{I},\text{``}1\text{''}}^{\text{A}} ( {{\upalpha )}} \pm \beta \cdot {\text{u}}_{\text{I},\text{``}1\text{''}}^{\text{A}} ( {{\upalpha \,+\, 90}}^{\text{o}} )} \right)^{ 2} { + }\left( {{\text{u}}_{\text{II},\text{``}1\text{''}}^{\text{A}} ( {{\upalpha )}} \pm \beta \cdot {\text{u}}_{\text{II},\text{``}1\text{''}}^{\text{A}} ( {{\upalpha + 90}}^{\text{o}} )} \right)^{ 2} }$$
    (38)
  • 0 < (TII, TI) ≤ TB or TC ≤ (TII, TI) ≤ TD—In this case all Tunc(α) fall on the first or the third branch of the spectrum and Se is a function of the angle α. Since both Se (α) and Se (α + 90°) belong to the same branch of the spectrum, F(α) and F(α + 90°) are expressed by the same equation. Hence, Eqs. (15), (28) and (30) have one branch in which F(α) and F(α + 90°) are expressed as functions of the angle α. For example, the terms F(α) and F(α + 90°) of Eq. (13) which lead to the final displacement in Eq. (15) are given by Eq. (39) assuming ω = 0.

    $${\text{F}}(\upalpha ) = \frac{{{\text{T}}_{\text{C}} \cdot {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5}}{{\frac{{{\text{T}}_{\text{I}} \cdot {\text{T}}_{\text{II}} }}{{\sqrt {{ \cos }\left( {{\upalpha }} \right)^{ 2} \cdot {\text{T}}_{\text{II}}^{ 2} + { \sin }\left( {{\upalpha }} \right)^{ 2} \cdot {\text{T}}_{\text{I}}^{ 2} } }}}} ,\quad {\text{F}}(\upalpha + 9 0^{\text{o}} ) { = }\frac{{{\text{T}}_{\text{C}} \cdot {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5}}{{\frac{{{\text{T}}_{\text{I}} \cdot {\text{T}}_{\text{II}} }}{{\sqrt {{ \cos }\left( {{{\upalpha \,+\, 90}}^{\text{o}} } \right)^{ 2} \cdot {\text{T}}_{\text{II}}^{ 2} + { \sin }\left( {{{\upalpha \,+\, 90}}^{\text{o}} } \right)^{ 2} \cdot {\text{T}}_{\text{I}}^{ 2} } }}}}$$
    (39)
  • All other combinations of TII and TI—To illustrate this scenario, the case in which TC ≤ TI ≤ TD and TB ≤ TII ≤ TC (see Fig. 10a) is presented herein and the same rationale can be followed for any other combination.

    Fig. 10
    figure 10

    Position of TI and TII on the response spectrum (a) and relative position of the two orthogonal Tunc (b)

In this case, Tunc(α) falls on different branches of the spectrum depending on the angle α. As a result, Se is expressed by different equations as a function of α and F(α) has multiple branches, where at least one of these branches is a function of α. The base shear of the perpendicular direction F(α + 90°) is expressed following the same rules. The relative position of Tunc(α) and Tunc(α + 90°) for a given angle α, shown in Fig. 10b, affects the development of Eqs. (15), (28) and (30). It can be seen in Fig. 10b that the angle θTc corresponding to the corner period TC determines the angle range of the branches of the final expression. To illustrate the formulation of Eqs. (15), (28) and (30), the relative position of Tunc(α) and Tunc(α + 90°) is presented in Fig. 11 for all ASIs and for all three cases with respect to the angle θTc. The solid hatched areas represent the position of Tunc(α), while the dashed hatched areas represent the respective position of Tunc(α + 90°). As a result, Eqs. (15), (28) and (30) comprise eight branches with specific angle range limits. The terms F(α) and F(α + 90°) of Eq. (15) that are used to form the piecewise equation are presented in Eq. (40) for the first case of Fig. 11, i.e. θTc < 45° and ω = 0.

Fig. 11
figure 11

Determination of the branches of the piecewise equation

$$\left\{ {\begin{array}{*{20}l} {\begin{array}{*{20}c} { 2 {{\uppi }} -\uptheta_{{{\text{T}}_{\text{c}} }} \le {{\upalpha }} \le\uptheta_{{{\text{T}}_{\text{c}} }} } \\ {\text{and}} \\ {\uptheta_{{{\text{T}}_{\text{c}} }} \le {{\upalpha \,+\, 90}}^{ \circ } \le {{\uppi }} -\uptheta_{{{\text{T}}_{\text{c}} }} } \\ \end{array} } \hfill & \Rightarrow \hfill & {{\text{F}}(\upalpha ) = \frac{{{\text{T}}_{\text{C}} \cdot {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5}}{{\frac{{{\text{T}}_{\text{I}} \cdot {\text{T}}_{\text{II}} }}{{\sqrt {{ \cos }\left( {{\upalpha }} \right)^{ 2} \cdot {\text{T}}_{\text{II}}^{ 2} {\text{ + sin}}\left( {{\upalpha }} \right)^{ 2} \cdot {\text{T}}_{\text{I}}^{ 2} } }}}},} \hfill & {{\text{F}}(\upalpha + 9 0^{ \circ } )= {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5} \hfill \\ {\begin{array}{*{20}c} {\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\, \le \,{{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ {\text{and}} \\ {\uptheta_{{{\text{T}}_{\text{c}} }} \le {{\upalpha \,+\, 90}}^{ \circ } \le {{\uppi }} -\uptheta_{{{\text{T}}_{\text{c}} }} } \\ \end{array} } \hfill & \Rightarrow \hfill & {{\text{F}}(\upalpha ) = {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5,} \hfill & {{\text{F}}(\upalpha + 9 0^{ \circ } )= {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5} \hfill \\ {\begin{array}{*{20}c} {\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\, \le \,{{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ {\text{and}} \\ {{{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,{{\upalpha }}\,{ + }\, 9 0^{ \circ } \, \le \,{{\uppi }}\,{ + }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ \end{array} } \hfill & \Rightarrow \hfill & {{\text{F}}(\upalpha ) = {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5,} \hfill & {{\text{F}}(\upalpha \,+\, 90^{ \circ } )= \frac{{{\text{T}}_{\text{C}} \cdot {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5}}{{\frac{{{\text{T}}_{\text{I}} \cdot {\text{T}}_{\text{II}} }}{{\sqrt {{ \cos }\left( {{{\upalpha \,+\, 90}}^{ \circ } } \right)^{ 2} \cdot {\text{T}}_{\text{II}}^{ 2} + { \sin }\left( {{{\upalpha \,+\, 90}}^{ \circ } } \right)^{ 2} \cdot {\text{T}}_{\text{I}}^{ 2} } }}}}} \hfill \\ {\begin{array}{*{20}c} {\theta_{{T_{c} }} \, \le \,\alpha \, \le \,\pi \, - \,\theta_{{T_{c} }} } \\ {\text{and}} \\ {\pi \, + \,\theta_{{T_{c} }} \, \le \,\,\alpha \, + \,90^{ \circ } \, \le \,2\,\pi \, - \,\theta_{{T_{c} }} } \\ \end{array} } \hfill & \Rightarrow \hfill & {{\text{F}}(\upalpha ) = {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5,} \hfill & {{\text{F}}(\upalpha \,+\, 90^{ \circ } )= {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5} \hfill \\ {\begin{array}{*{20}c} {{{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\, \le \,{{\uppi }}\,{ + }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ {\text{and}} \\ {{{\uppi }}\,{ + }\,\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\,{ + }\, 9 0^{ \circ } \, \le \, 2 {{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ \end{array} } \hfill & \Rightarrow \hfill & {{\text{F}}(\upalpha ) = \frac{{{\text{T}}_{\text{C}} \cdot {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5}}{{\frac{{{\text{T}}_{\text{I}} \cdot {\text{T}}_{\text{II}} }}{{\sqrt {{ \cos }\left( {{\upalpha }} \right)^{ 2} \cdot {\text{T}}_{\text{II}}^{ 2} {\text{ + sin}}\left( {{\upalpha }} \right)^{ 2} \cdot {\text{T}}_{\text{I}}^{ 2} } }}}},} \hfill & {{\text{F}}(\upalpha \,+\, 90^{ \circ } )= {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5} \hfill \\ {\begin{array}{*{20}c} {{{\uppi }}\,{ + }\,\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\, \le \, 2 {{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ {\text{and}} \\ {{{\uppi }}\,{ + }\,\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\,{ + }\, 9 0^{ \circ } \, \le \, 2 {{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ \end{array} } \hfill & \Rightarrow \hfill & {{\text{F}}(\upalpha ) = {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5,} \hfill & {{\text{F}}(\upalpha \,+\, 90^{ \circ } )= {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5} \hfill \\ {\begin{array}{*{20}c} {{{\uppi }}\,{ + }\,\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\, \le \, 2 {{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ {\text{and}} \\ { 2 {{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\,{ + }\, 9 0^{ \circ } \, \le \,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ \end{array} } \hfill & \Rightarrow \hfill & {{\text{F}}(\upalpha ) = {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5,} \hfill & {{\text{F}}(\upalpha \,+\, 90^{ \circ } )= \frac{{{\text{T}}_{\text{C}} \cdot {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5}}{{\frac{{{\text{T}}_{\text{I}} \cdot {\text{T}}_{\text{II}} }}{{\sqrt {{ \cos }\left( {{{\upalpha \,+\, 90}}^{ \circ } } \right)^{ 2} \cdot {\text{T}}_{\text{II}}^{ 2} + { \sin }\left( {{{\upalpha \,+\, 90}}^{ \circ } } \right)^{ 2} \cdot {\text{T}}_{\text{I}}^{ 2} } }}}}} \hfill \\ {\begin{array}{*{20}c} {{{\uppi }}\,{ + }\,\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\, \le \, 2 {{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ {\text{and}} \\ {\uptheta_{{{\text{T}}_{\text{c}} }} \, \le \,\,{{\upalpha }}\,{ + }\, 9 0^{ \circ } \, \le \,{{\uppi }}\,{ - }\,\uptheta_{{{\text{T}}_{\text{c}} }} } \\ \end{array} } \hfill & \Rightarrow \hfill & {{\text{F}}(\upalpha ) = {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5,} \hfill & {{\text{F}}(\upalpha \,+\, 90^{ \circ } )= {\text{a}}_{\text{g}} \cdot {\text{S}} \cdot {{\upeta }} \cdot 2. 5} \hfill \\ \end{array} } \right.$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoulidou, D., Romão, X. Critical orientation of earthquake loading for building performance assessment using lateral force analysis. Bull Earthquake Eng 15, 5217–5246 (2017). https://doi.org/10.1007/s10518-017-0176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-017-0176-9

Keywords

Navigation