Tomography of crustal seismic attenuation in Metropolitan France: implications for seismicity analysis

  • Jessie Mayor
  • Paola Traversa
  • Marie Calvet
  • Ludovic Margerin
Original Research Paper

Abstract

In this work, we map the absorption properties of the French crust by analyzing the decay properties of coda waves. Estimation of the coda quality factor \(Q_{c}\) in five non-overlapping frequency-bands between 1 and 32 Hz is performed for more than 12,000 high-quality seismograms from about 1700 weak to moderate crustal earthquakes recorded between 1995 and 2013. Based on sensitivity analysis, \(Q_{c}\) is subsequently approximated as an integral of the intrinsic shear wave quality factor \(Q_{i}\) along the ray connecting the source to the station. After discretization of the medium on a 2-D Cartesian grid, this yields a linear inverse problem for the spatial distribution of \(Q_{i}\). The solution is approximated by redistributing \(Q_{c}\) in the pixels connecting the source to the station and averaging over all paths. This simple procedure allows to obtain frequency-dependent maps of apparent absorption that show lateral variations of \(50\%\) at length scales ranging from 50 km to 150 km, in all the frequency bands analyzed. At low frequency, the small-scale geological features of the crust are clearly delineated: the Meso-Cenozoic basins (Aquitaine, Brabant, Southeast) appear as strong absorption regions, while crystalline massifs (Armorican, Central Massif, Alps) appear as low absorption zones. At high frequency, the correlation between the surface geological features and the absorption map disappears, except for the deepest Meso-Cenozoic basins which exhibit a strong absorption signature. Based on the tomographic results, we explore the implications of lateral variations of absorption for the analysis of both instrumental and historical seismicity. The main conclusions are as follows: (1) current local magnitude \(M_{L}\) can be over(resp. under)-estimated when absorption is weaker(resp. stronger) than the nominal value assumed in the amplitude-distance relation; (2) both the forward prediction of the earthquake macroseismic intensity field and the estimation of historical earthquake seismological parameters using macroseismic intensity data are significantly improved by taking into account a realistic 2-D distribution of absorption. In the future, both \(M_{L}\) estimations and macroseismic intensity attenuation models should benefit from high-resolution models of frequency-dependent absorption such as the one produced in this study.

Keywords

Seismic attenuation Coda waves Absorption Metropolitan France 

References

  1. Aki K (1980) Scattering and attenuation of shear waves in the lithosphere. J Geophys Res Solid Earth 85(B11):6496–6504CrossRefGoogle Scholar
  2. Aki K, Chouet B (1975) Origin of coda waves: source, attenuation, and scattering effects. J Geophys Res 80(23):3322–3342CrossRefGoogle Scholar
  3. Ambraseys N (1985) Intensity-attenuation and magnitude-intensity relationships for Northwest European earthquakes. Earthq Eng Struct Dyn 13(6):733–778CrossRefGoogle Scholar
  4. Arroucau P, Mocquet A, Vacher P (2006) Atténuation de l’intensité macrosismique pour la france métropolitaine: importance de l’intensité épicentrale. CR Geosci 338(9):596–605CrossRefGoogle Scholar
  5. Bakun Wu, Wentworth C (1997) Estimating earthquake location and magnitude from seismic intensity data. Bull Seismol Soc Am 87(6):1502–1521Google Scholar
  6. Bakun WH, Scotti O (2006) Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes. Geophys J Int 164(3):596–610CrossRefGoogle Scholar
  7. Baumont D, Manchuel K, Traversa, P, Durouchoux, C, Nayman E, Ameri G (2017) Empirical intensity attenuation models calibrated in \(M_{w}\) for Metropolitan France. Bull Earthq EngGoogle Scholar
  8. Besson O, Rouiller J-D, Frei W, Masson H (1991) Campagne de sismique-réflexion dans la vallée du Rhône (entre Sion et Martigny, Suisse). Bull de la Murithienne 109:45–64Google Scholar
  9. Bossu R, Scotti O, Cotton F, Cushing M, Levret A (2000) Determination of geomechanical site effects in France from macroseismic intensities and reliability of macroseismic magnitude of historical events. Tectonophysics 324(1):81–110CrossRefGoogle Scholar
  10. Calvet M, Margerin L (2013) Lapse-time dependence of coda-Q: Anisotropic multiple-scattering models and application to the pyrenees. Bull Seismol Soc Am 103(3):1993–2010CrossRefGoogle Scholar
  11. Calvet M, Sylvander M, Margerin L, Villaseñor A (2013) Spatial variations of seismic attenuation and heterogeneity in the pyrenees: coda-Q and peak delay time analysis. Tectonophysics 608:428–439CrossRefGoogle Scholar
  12. Campillo M, Plantet J (1991) Frequency dependence and spatial distribution of seismic attenuation in France: experimental results and possible interpretations. Phys Earth Planet Inter 67(1):48–64CrossRefGoogle Scholar
  13. Cara M, Cansi Y, Schlupp A, Arroucau P, Béthoux N, Beucler E, Bruno S, Calvet M, Chevrot S, Deboissy A (2015) Si-hex: a new catalogue of instrumental seismicity for metropolitan france. Bulletin de la Société Géologique de France 186(1):3–19CrossRefGoogle Scholar
  14. Carcolé E, Sato H (2010) Spatial distribution of scattering loss and intrinsic absorption of short-period S waves in the lithosphere of japan on the basis of the multiple lapse time window analysis of hi-net data. Geophys J Int 180(1):268–290CrossRefGoogle Scholar
  15. Denieul M, Sèbe O, Cara M, Cansi Y (2015) Mw Estimation from Crustal Coda Waves Recorded on Analog Seismograms. Bull Seismol Soc Am. doi:10.1785/0120140226 Google Scholar
  16. Drouet S, Cotton F, Guéguen P (2010) Vs30, \(\kappa\), regional attenuation and mw from accelerograms: application to magnitude 3–5 french earthquakes. Geophys J Int 182(2):880–898CrossRefGoogle Scholar
  17. Fehler M, Hoshiba M, Sato H, Obara K (1992) Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance. Geophys J Int 108(3):787–800CrossRefGoogle Scholar
  18. Gasperini P, Vannucci G, Tripone D, Boschi E (2010) The location and sizing of historical earthquakes using the attenuation of macroseismic intensity with distance. Bull Seismol Soc Am 100(5A):2035–2066CrossRefGoogle Scholar
  19. Jin A, Aki K (1988) Spatial and temporal correlation between coda Q and seismicity in China. Bull Seismol Soc Am 78(2):741–769Google Scholar
  20. Kövesligethy R (1907) Seismischer stärkegrad und intensität der beben, gerlands beiträge zur geophysik, band viii, leipzigGoogle Scholar
  21. Lacombe C, Campillo M, Paul A, Margerin L (2003) Separation of intrinsic absorption and scattering attenuation from Lg coda decay in central france using acoustic radiative transfer theory. Geophys J Int 154(2):417–425CrossRefGoogle Scholar
  22. Le Pichon X, Rangin C, Hamon Y, Loget N, Lin JY, Andreani L, Flotte N (2010) Geodynamics of the france southeast basin. Bulletin de la Société Géologique de France 181(6):477–501CrossRefGoogle Scholar
  23. Levret A, Backe J, Cushing M (1994) Atlas of macroseismic maps for french earthquakes with their principal characteristics. Nat Hazards 10(1–2):19–46CrossRefGoogle Scholar
  24. Margerin L, Planès T, Mayor J, Calvet M (2016) Sensitivity kernels for coda-wave interferometry and scattering tomography: theory and numerical evaluation in two-dimensional anisotropically scattering media. Geophys J Int 204(1):650–666CrossRefGoogle Scholar
  25. Mayor J, Margerin L, Calvet M (2014) Sensitivity of coda waves to spatial variations of absorption and scattering: radiative transfer theory and 2-D examples. Geophys J Int 197:1117–1137CrossRefGoogle Scholar
  26. Mayor J, Calvet M, Margerin L, Vanderhaeghe O, Traversa P (2016) Crustal structure of the alps as seen by attenuation tomography. Earth Planet Sci Lett 439:71–80CrossRefGoogle Scholar
  27. Mitchell BJ, Cong L, Ekström G (2008) A continent-wide map of 1-HZ Lg coda Q variation across eurasia and its relation to lithospheric evolution. J Geophys Res Solid Earth 113:B04303. doi:10.1029/2007JB005065 Google Scholar
  28. Mitchell BJ, Pan Y, Xie J, Cong L (1997) Lg coda Q variation across eurasia and its relation to crustal evolution. J Geophys Res Solid Earth (1978–2012) 102(B10):22767–22779CrossRefGoogle Scholar
  29. Nicolas M, Massinon B, Mechler P, Bouchon M (1982) Attenuation of regional phases in Western Europe. Bull Seismol Soc Am 72(6A):2089–2106Google Scholar
  30. Pasyanos M (2014) Validation of attenuation models for ground motion applications in Central and Eastern North America. Earthq Spectra. doi:10.1193/052714EQS074M Google Scholar
  31. Pawlewicz MJ, Steinshouer DW, Gautier DL (2002) Map showing geology, oil and gas fields, and geologic provinces of Europe including Turkey. Technical Report Open file report 97-470I, United States Geological SurveyGoogle Scholar
  32. Rautian T, Khalturin V (1978) The use of the coda for determination of the earthquake source spectrum. Bull Seismol Soc Am 68(4):923–948Google Scholar
  33. RESIF-RLPB (1995) French Broad-band network, RESIF-RAP strong motion network, and other seismic stations in metropolitan France. RESIF—Rseau Sismologique et godsique Franais. Seismic Network, Technical report. doi:10.15778/RESIF.FR
  34. Saito T, Sato H, Ohtake M (2002) Envelope broadening of spherically outgoing waves in three-dimensional random media having power law spectra. J Geophys Res 107:2089–2103CrossRefGoogle Scholar
  35. Sato H (1977) Energy propagation including scattering effects single isotropic scattering approximation. J Phys Earth 25(1):27–41CrossRefGoogle Scholar
  36. Sato H (1989) Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation: Southeastern Honshu, Japan. J Geophys Res Solid Earth 94(B12):17735–17747CrossRefGoogle Scholar
  37. Sato H, Fehler MC, Maeda T (2012) Seismic wave propagation and scattering in the heterogeneous Earth, 2 edn. Springer, BerlinCrossRefGoogle Scholar
  38. Savvaidis A, Papazachos C, Hatzidimitriou P (1998) Site effect estimation based on source and path modeling of macroseismic intensities in the area of greece. Eur Earthq Eng 12:18–28Google Scholar
  39. Scotti O, Levret A, Hernandez B (1999) Verification of macroseismic methods on five ml >5 instrumental earthquakes in France. Phys Chem Earth Part A 24(6):495–499CrossRefGoogle Scholar
  40. Sens-Schönfelder C, Margerin L, Campillo M (2009) Laterally heterogeneous scattering explains Lg blockage in the Pyrenees. J Geophys Res 114:B07309. doi:10.1029/2008JB006107 CrossRefGoogle Scholar
  41. Sponheuer W (1960) Berechnungsverfahren mit schrittweiser näherung. Methoden zur Herdtiefen Bestimmung in der Makroseismik. In: Sponheuer W (ed), Freiberger Forschungshefte C vol 88, pp 16–32Google Scholar
  42. Traversa P, Baumont D, Manchuel K, Durouchoux C, Nayman E (2017) Magnitude and depth estimates for historical earthquakes: methodology and application to the french seismicity. Bull Earthq EngGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jessie Mayor
    • 1
  • Paola Traversa
    • 2
  • Marie Calvet
    • 3
  • Ludovic Margerin
    • 3
  1. 1.EDF R&DPalaiseauFrance
  2. 2.EDF-CEIDRE-TEGGAix-en-ProvenceFrance
  3. 3.Institut de Recherche en Astrophysique et PlanétologieUniversité Paul Sabatier, C.N.R.SToulouseFrance

Personalised recommendations