Advertisement

Bulletin of Earthquake Engineering

, Volume 15, Issue 3, pp 889–906 | Cite as

How sensitive are site effects and building response to extreme cold temperature? The case of the Grenoble’s (France) City Hall building

  • Philippe GuéguenEmail author
  • Mickael Langlais
  • Stéphane Garambois
  • Christophe Voisin
  • Isabelle Douste-Bacqué
Original Research Paper
  • 188 Downloads

Abstract

In this paper, a simple analysis is done to explain the observed increase of resonance frequency of City-Hall building in Grenoble (France), a 12-story reinforced concrete building. This period corresponds also to the observed variation of the resonance frequency of the Grenoble’s sedimentary basin. The postulated hypothesis is that the frequency increase reflects the stiffness increase of the soil–structure system related to the cold period that hit Western Europe in 2012. To explore this hypothesis we have processed continuous recording during the early 2012 recorded at the roof level and at a close free-field accelerometric station. The variation of site effect is monitored by the horizontal-to-vertical spectral ratio of seismic noise, and the variation of apparent and system frequencies of the building by the random decrement technique. Apparent frequency is computed by deconvolution method between roof and basement. The maximum freezing penetration is 0.75 m and the horizontal relative motion stiffness of the foundation is strongly sensitive to the modification of the upper soil layer. The results suggest a variation (<1 %) larger than twice the standard deviation of the natural wandering of resonance frequency observed at City-Hall building for normal weather conditions, and question on the development of realistic models developed for the detection of damage and for the physical interpretation of such frequency variations observed in actual buildings.

Keywords

Soil–structure interaction Resonance frequency Random decrement technique Temperature effect Grenoble’s City-Hall building 

Notes

Acknowledgments

This work has been supported by a grant from Labex OSUG@2020 (Investissements d’avenir – ANR10 LABX56) and by French Research National Agency (ANR) through RISKNAT program (Project URBASIS ANR-09-RISK-009). Data are provided by the French Accelerometric Network (http://www.rap.resif.fr) supported by a public grant overseen by the French national research agency (ANR) as part of the “Investissements d’Avenir” program (Reference: ANR-11-EQPX-0040) and the French Ministry of ecology, sustainable development and energy.

References

  1. Asmussen JC, Brincker R, Ibrahim SR (1999) Statistical theory of the vector random decrement technique. J Sound Vib 226(2):329–344. doi: 10.1006/jsvi.1999.2300 CrossRefGoogle Scholar
  2. Bartlett MG, Chapman DS, Harris RN (2006) A decade of ground-air temperature tracking at Emigrant Pass Observatory, Utah. J Clim 19(15):3722–3731. doi: 10.1175/JCLI3808.1 CrossRefGoogle Scholar
  3. Beucler E, Mocquet A, Schimmel M, Chevrot S, Quillard O, Vergne J, Sylvander M (2015) Observation of deep water microseisms in the North Atlantic Ocean using tide modulations. Geophys Res Lett 42(2):316–322. doi: 10.1002/2014GL062347 CrossRefGoogle Scholar
  4. Bonnefoy-Claudet S, Cotton F, Bard PY (2006a) The nature of noise wavefield and its applications for site effects studies: a literature review. Earth Sci Rev 79(3):205–227. doi: 10.1016/j.earscirev.2006.07.004 CrossRefGoogle Scholar
  5. Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fäh D (2006b) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167(2):827–837. doi: 10.1016/j.earscirev.2006.07.004 CrossRefGoogle Scholar
  6. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, OxfordGoogle Scholar
  7. Celebi M, Phan LT, Marshall RD (1993) Dynamic characteristics of five tall buildings during strong and low-amplitude motions. Struct Des Tall Build 2(1):1–15. doi: 10.1002/tal.4320020102 CrossRefGoogle Scholar
  8. Clayton RW, Wiggins RA (1976) Source shape estimation and deconvolution of teleseismic bodywaves. Geophys J R Astr Soc 47(1):151–177. doi: 10.1111/j.1365-246X.1976.tb01267 CrossRefGoogle Scholar
  9. Clinton JF, Bradford SC, Heaton TH, Favela J (2006) The observed wander of the natural frequencies in a structure. Bull Seismol Soc Am 96:237–257. doi: 10.1785/0120050052 CrossRefGoogle Scholar
  10. Cole H (1973) On-line failure detection and damping measurement of aerospace structures by random decrement signatures. Technical Report NASA CR-2205Google Scholar
  11. Cornou C, Bard PY, Dietrich M (2003) Contribution of dense array analysis to basin-edge-induced waves identification and quantification. Application to Grenoble basin, French Alps (II). Bull Seismol Soc Am 93:2624–2648. doi: 10.1785/0120020140 CrossRefGoogle Scholar
  12. Cox B, Wood C, Hazirbaba K (2012) Frozen and unfrozen shear wave velocity seismic site classification of Fairbanks, Alaska. J Cold Reg Eng 26(3):118–145. doi: 10.1061/(ASCE)CR.1943-5495.0000041 CrossRefGoogle Scholar
  13. Desprez C, Kotronis P, Mazars J (2015) Seismic vulnerability assessment of a RC structure before and after FRP retrofitting. Bull Earthq Eng 13(2):539–564. doi: 10.1007/s10518-014-9621-1 CrossRefGoogle Scholar
  14. Dolenc D, Dreger D (2005) Microseisms observations in the Santa Clara Valley, California. Bull Seismol Soc Am 95(3):1137–1149. doi: 10.1785/0120040060 CrossRefGoogle Scholar
  15. Dunand F, Ait Meziane Y, Guéguen P, Chatelain JL, Guillier B, Ben Salem R, Hadid M, Hellel M, Kiboua A, Laouami N, Machane D, Mezouer N, Nour A, Oubaiche EH, Remas A (2004) Utilisation du bruit de fond pour l’analyse des dommages des bâtiments de Boumerdes suite au séisme du 21 mai 2003. Mém Serv Géol Alg 12:177–191Google Scholar
  16. Dunand F, Guéguen P, Bard PY, Rodgers J, Celebi M (2006) Comparison of the dynamic parameters extracted from weak, moderate and strong motion recorded in buildings. In: Proceedings of the first European conference on earthquake engineering and seismology 2006; Geneva, Switzerland, paper 1021Google Scholar
  17. Essen H-H, Kruger F, Dahm T, Grevemeyer I (2003) On the generation of secondary microseisms observed in northern and central Europe. J Geophys Res 108(B10):2506–2521. doi: 10.1029/2002JB002338 CrossRefGoogle Scholar
  18. Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philos Trans R Soc Lond 365:303–315. doi: 10.1098/rsta.2006.1928 CrossRefGoogle Scholar
  19. Gazetas G (1991) Formulas and charts for impedances of surface and embedded foundations. J Geotech Eng 117(9):1363–1381. doi: 10.1061/(ASCE)0733-9410(1991)117:9(1363) CrossRefGoogle Scholar
  20. Guéguen P, Cornou C, Garambois S, Banton J (2007) On the limitation of the H/V spectral ratio using seismic noise as an exploration tool: application to the Grenoble valley (France), a small apex ratio basin. Pure Appl Geophys 164(1):115–134. doi: 10.1007/s00024-006-0151-x CrossRefGoogle Scholar
  21. Herak M, Herak D (2010) Continuous monitoring of dynamic parameters of the DGFSM building (Zagreb, Croatia). Bull Earthq Eng 8:657–669. doi: 10.1007/s10518-009-9112-y CrossRefGoogle Scholar
  22. Hillers G, Graham N, Campillo M, Kedar S, Landès M, Shapiro N (2012) Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models. Geochem Geophys Geosyst. doi: 10.1029/2011GC003875 Google Scholar
  23. LeBlanc AM, Fortier R, Allard M, Cosma C, Buteau S (2004) Seismic cone penetration test and seismic tomography in permafrost. Can Geotech J 41(5):796–813CrossRefGoogle Scholar
  24. Lebrun B, Hatzfeld D, Bard PY (2001) A site effect study in urban area: experimental results in Grenoble (France). Pure Appl Geophys 158:2543–2557CrossRefGoogle Scholar
  25. Luco JE (1980) Soil–structure interaction and identification of structural models. In: Proceedings of the 2nd ASCE conference on civil engineering and nuclear power, vol 2, pp 1–31Google Scholar
  26. Luco JE, Lanzi A (2013) Approximate soil–structure interaction analysis by a perturbation approach: the case of stiff soils. Soil Dyn Earthq Eng 51:97–110. doi: 10.1016/j.soildyn.2013.04.005 CrossRefGoogle Scholar
  27. Luco JE, Trifunac MD, Wong HL (1988) Isolation of soil–structure interaction effects by full-scale forced vibration tests. Earthq Eng Struct Dyn 16(1):1–21. doi: 10.1002/eqe.4290160102 CrossRefGoogle Scholar
  28. Michel C, Guéguen P (2010) Time–frequency analysis of small frequency variations in civil engineering structures under weak and strong motions using a reassignment method. Struct Health Monit 9(2):159–171. doi: 10.1177/1475921709352146 CrossRefGoogle Scholar
  29. Michel C, Guéguen P, El Arem S, Mazars J, Kotronis P (2010) Full Scale Dynamic response of a RC building under weak seismic motions using earthquake recordings, ambient vibrations and modelling. Earthq Eng Struct Dyn 39:419–441. doi: 10.1002/eqe.948 Google Scholar
  30. Mikael A, Guéguen P, Bard PY, Roux P, Langlais M (2013) Long-term frequency and damping wandering in buildings analysed using the Random Decrement Technique (RDT). Bull seismol Soc Am 103(1):236–246. doi: 10.1785/0120120048 CrossRefGoogle Scholar
  31. Nasser F, Li Z, Martin N, Guéguen P (2013) Automatic parameter setting of Random Decrement Technique for the estimation of building modal parameters. In: Proceedings of surveillance 7 international conference, Chartres (France), October 29–30, 2013Google Scholar
  32. Nayeri RD, Masri SF, Ghanem RG, Nigbor RL (2008) A novel approach for the structural identification and monitoring of a full-scale 17-story building based on ambient vibration measurements. Smart Mater Struct 17:1–19. doi: 10.1088/0964-1726/17/2/025006 CrossRefGoogle Scholar
  33. Péquegnat C, Guéguen P, Hatzfeld D, Langlais M (2008) The French accelerometric network (RAP) and national data centre (RAP-NDC). Seismol Res Lett 79(1):79–89. doi: 10.1785/gssrl.79.1.79 CrossRefGoogle Scholar
  34. Régnier J, Michel C, Bertrand E, Guéguen P (2013) Contribution of ambient vibration recordings (free-field and buildings) for post-seismic analysis: the case of the Mw 7.3 Martinique (French lesser Antilles) earthquake, November 29, 2007. Soil Dyn Earthq Eng 50:162–167. doi: 10.1016/j.soildyn.2013.03.007 CrossRefGoogle Scholar
  35. Roux P, Guéguen P, Baillet L, Hamze A (2014) Structural-change localization and monitoring through perturbation-based inverse problem. J Acous Soc Am 136:2586. doi: 10.1121/1.4897403 CrossRefGoogle Scholar
  36. Salawu OS (1997) Detection of structural damage through changes in frequency: a review. Eng Struct 19(9):718–723. doi: 10.1016/S0141-0296(96)00149-6 CrossRefGoogle Scholar
  37. Snieder R, Şafak E (2006) Extracting the building response using seismic interferometry: theory and application to the Millikan Library in Pasadena, California. Bull Seismol Soc Am 96(2):586–598. doi: 10.1785/0120050109 CrossRefGoogle Scholar
  38. Stewart JP, Fenves GL (1998) System identification for evaluating soil–structure interaction effects in buildings from strong motion recordings. Earthq Eng Struct Dyn 27:869–885. doi: 10.1002/(SICI)1096-9845(199808)27:8<869:AID-EQE762>3.0.CO;2-9 CrossRefGoogle Scholar
  39. Todorovska M (2009) Seismic interferometry of a soil–structure interaction model with coupled horizontal and rocking response. Bull Seismol Soc Am 99(2A):611–625. doi: 10.1785/0120080191 CrossRefGoogle Scholar
  40. Todorovska MI, Al Rjoub Y (2009) Environmental effects on measured structural frequencies—model prediction of short-term shift during heavy rainfall and comparison with full-scale observations. Struct Control Health Monit 16(4):406–424. doi: 10.1016/j.soildyn.2006.01.019 CrossRefGoogle Scholar
  41. Todorovska MI, Trifunac MD (2008) Impulse response analysis of the Van Nuys 7-storey hotel during 11 earthquakes and earthquake damage detection. Struct Control Health Monit 5(1):90–116. doi: 10.1002/stc.208 CrossRefGoogle Scholar
  42. Trifunac MD, Todorovska MI, Manic MI, Bulajic BA (2010) Variability of the fixed-base and soil–structure system frequencies of a building—the case of Borik-2 building. Struct Control Health Monit 17:120–151. doi: 10.1002/stc.277 CrossRefGoogle Scholar
  43. Vandiver JK, Dunwoody AB, Campbell RB, Cook MF (1982) A mathematical basis for the random decrement vibration signature analysis technique. J Mech Des 104:307–313. doi: 10.1115/1.3256341 CrossRefGoogle Scholar
  44. Vidal F, Navarro M, Aranda C, Enomoto T (2014) Changes in dynamic characteristics of Lorca RC buildings from pre- and post-earthquake ambient vibration data. Bull Earthq Eng 12(5):2095–2110. doi: 10.1007/s10518-013-9489-5 CrossRefGoogle Scholar
  45. Xia Y, Hao H (2003) Statistical damage identification of structures with frequency changes. J Sound Vib 263:853–870. doi: 10.1016/S0022-460X(02)01077-5 CrossRefGoogle Scholar
  46. Xu G, Yang ZJ, Dutta U, Tang L, Marx E (2011) Seasonally frozen soil effects on the seismic site response. J Cold Reg Eng 25(2):53–70. doi: 10.1061/(ASCE)CR.1943-5495.0000022 CrossRefGoogle Scholar
  47. Yang ZJ, Dutta U, Xu G, Hazirbaba K (2010) Effects of permafrost and seasonally frozen ground on the seismic response of transportation infrastructure sites. Technical report # INE/AUTC 11.03, Alaska Department of Transportation ResearchGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Philippe Guéguen
    • 1
    Email author
  • Mickael Langlais
    • 1
  • Stéphane Garambois
    • 1
  • Christophe Voisin
    • 1
  • Isabelle Douste-Bacqué
    • 1
  1. 1.ISTerre, CNRS/IFSTTARUniversité de Grenoble-AlpesGrenobleFrance

Personalised recommendations