Bulletin of Earthquake Engineering

, Volume 15, Issue 6, pp 2497–2524 | Cite as

When time and faults matter: towards a time-dependent probabilistic SHA in Calabria, Italy

  • A. AkinciEmail author
  • P. Vannoli
  • G. Falcone
  • M. Taroni
  • M. M. Tiberti
  • M. Murru
  • P. Burrato
  • M. T. Mariucci
Original Research Paper


In this study, we attempt to improve the standards in Probabilistic Seismic Hazard Assessment (PSHA) towards a time-dependent hazard assessment by using the most advanced methods and new databases for the Calabria region, Italy. In this perspective we improve the knowledge of the seismotectonic framework of the Calabrian region using geologic, tectonic, paleoseismological, and macroseismic information available in the literature. We built up a PSHA model based on the long-term recurrence behavior of seismogenic faults, together with the spatial distribution of historical earthquakes. We derive the characteristic earthquake model for those sources capable of rupturing the entire fault segment (full-rupture) independently with a single event of maximum magnitude. We apply the floating rupture model to those earthquakes whose location is not known sufficiently constrained. We thus associate these events with longer fault systems, assuming that any such earthquake can rupture anywhere within the particular fault system (floating partial-rupture) with uniform probability. We use a Brownian Passage Time (BPT) model characterized by mean recurrence, aperiodicity, or uncertainty in the recurrence distribution and elapsed time since the last characteristic earthquake. The purpose of this BPT model is to express the time-dependence of the seismic processes to predict the future ground motions in the region. Besides, we consider the influence on the probability of earthquake occurrence controlled by the change in static Coulomb stress (ΔCFF) due to fault interaction; to pursue this, we adopt a model built on the fusion of BPT model (BPT + ΔCFF). We present our results for both time-dependent (renewal) and time-independent (Poisson) models in terms of Peak Ground Acceleration (PGA) maps for 10% probability of exceedance in 50 years. The hazard may increase by more than 20% or decrease by as much as 50% depending on the different occurrence model. Seismic hazard in terms of PGA decreases about 20% in the Messina Strait, where a recent major earthquake took place, with respect to traditional time-independent estimates. PGA near the city of Cosenza reaches ~ 0.36 g for the time-independent model and 0.40 g for the case of the time-dependent one (i.e. a 15% increase). Both the time-dependent and time-independent models for the period of 2015–2065 demonstrate that the city of Cosenza and surrounding areas bear the highest seismic hazard in Calabria.


Probabilistic seismic hazard maps Time-dependent hazard Fault-based model Fault interaction Seismogenic sources Calabria-Italy 



This study benefited from funding of the Projects S2-2012 and S2-2014, provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC). This paper does not necessarily represent DPC official opinions and policies. We are grateful for review comments which improved the manuscript by Guest Editor Laura Peruzza and two anonymous reviewers for helpful suggestion and constructive revisions. We are very grateful to Umberto Fracassi, Luca Malagnini and Simon Ellis for their comments that help to clarify some aspects of the work and for revising English style and grammar. Most figures are prepared using the Generic Mapping Tools version 4.2.1 (; the Seismic Analysis Code (SAC) is used for many of the calculations throughout several set of macros. The annual rate of exceeding a particular amount of ground motion at a given site was calculated using the computer codes available on the USGS Web site (

Supplementary material

10518_2016_65_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2158 kb)


  1. Akinci A (2010) HAZGRIDX: earthquake forecasting model for ML ≥ 5.0 earthquakes in Italy based on spatially smoothed seismicity. Ann Geophys 53(3):51–61. doi: 10.4401/ag-4811 Google Scholar
  2. Akinci A, Galadini F, Pantosti D, Petersen M, Malagnini L, Perkins D (2009) Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the central Apennines, Italy. Bull Seismol Soc Am 99(2A):585–610. doi: 10.1785/0120080053 CrossRefGoogle Scholar
  3. Akinci A, Perkins D, Lombardi AM, Basili R (2010) Uncertainties in the estimation of the probability of occurrence of strong earthquakes from individual seismological sources in the Apennines, Italy. J Seismol 14:95–117CrossRefGoogle Scholar
  4. Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean, and the Middle East. Seismol Res Lett 81(2):195–206. doi: 10.1785/gssrl.81.2.195 CrossRefGoogle Scholar
  5. Anderson JG, Luco JE (1983) Consequences of slip rate constraints on earthquake occurrence relations. Bull Seismol Soc Am 73:471–496Google Scholar
  6. Basili R, Valensise G, Vannoli P, Burrato P, Fracassi U, Mariano S, Tiberti MM, Boschi E (2008) The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 453:20–43. doi: 10.1016/j.tecto.2007.04.014 CrossRefGoogle Scholar
  7. Beeler NM, Simpson RW, Hickman SH, Lockner DA (2000) Pore fluid pressure, apparent friction, and Coulomb failure. J Geophys Res 105(B11):533–542CrossRefGoogle Scholar
  8. Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R (2011) Ground motion prediction equations derived from the Italian strong motion database. Bull Earthq Eng. doi: 10.1007/s10518-011-9313-z Google Scholar
  9. Boore DM, Atkinson GA (2008) Ground Motion prediction equations for the average horizontal component of PGA, PGV, PGD, and 5% damped PSA art spectral periods between 0.01 and 10.0 s. Earthq Spectra 24(1):99–138CrossRefGoogle Scholar
  10. Castello B, Selvaggi G, Chiarabba C, Amato A (2006) CSI Catalogo della sismicità italiana 1981–2002, versione 1.1. INGV-CNT, Roma. Accessed 8 April 2015
  11. Cauzzi C, Faccioli E (2008) Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. J Seismol 12:453–475CrossRefGoogle Scholar
  12. Cocco M, Rice JR (2002) Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J Geophys Res. doi: 10.1029/2000JB000138 Google Scholar
  13. Console R, Catalli F (2006) A rate-state model for aftershocks triggered by dislocation on a rectangular fault: a review and new insights. Ann Geophys 49(6):1259–1263Google Scholar
  14. Console R, Murru M, Falcone G, Catalli F (2008) Stress interaction effect on the occurrence probability of characteristic earthquakes in Central Apennines. J Geophys Res. doi: 10.1029/2007JB005418 Google Scholar
  15. Convertito V, Emolo A, Zollo A (2006) Seismic-hazard assessment for a characteristic earthquake scenario: an integrated probabilistic-deterministic method. Bull Seismol Soc Am 96(2):377–391CrossRefGoogle Scholar
  16. D’Agostino N, Selvaggi G (2004) Crustal motion along the Eurasia-Nubia boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements. J Geophys Res. doi: 10.1029/2004JB002998 Google Scholar
  17. Del Ben A, Barnaba C, Taboga A (2008) Strike-slip systems as the main tectonic features in the Plio-Quaternary kinematics of the Calabrian Arc. Mar Geophys Res 29(1):1–12. doi: 10.1007/s11001-007-9041-6 CrossRefGoogle Scholar
  18. Delavaud E, Cotton F, Akkar S et al (2012) Towards a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. J Seismol 16:451–473. doi: 10.1007/s10950-012-9281-z CrossRefGoogle Scholar
  19. De Mets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversals time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194CrossRefGoogle Scholar
  20. Devoti R, Riguzzi F, Cuffaro M, Doglioni C (2008) New GPS constraints on the kinematics of the Apennines subduction. Earth Planet Sci Lett 273:163–174. doi: 10.1016/j.epsl.2008.06.031 CrossRefGoogle Scholar
  21. DISS Working Group (2015) Database of Individual Seismogenic Sources (DISS), version 3.2.0: a compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas., © INGV 2015—Istituto Nazionale di Geofisica e Vulcanologia—All rights reserved. doi: 10.6092/INGV.IT-DISS3.2.0. Accessed 15 Sept 2015
  22. Ellsworth WL, Matthews MV, Nadeau RM, Nishenko SP, Reasenberg PA, Simpson RW (1999) A physically-based earthquake earthquake recurrence model for estimation of long-term earthquake probabilities, U S Geol Surv Open-File Rept 99–522Google Scholar
  23. Faccenna C, Funiciello F, Giardini D, Lucente P (2001) Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet Sci Lett 187(1–2):105–116. doi: 10.1016/S0012-821X(01)00280-1 CrossRefGoogle Scholar
  24. Field EH, Jackson DD, Dolan JF (1999) A mutually consistent seismic hazard source model for Southern California. Bull Seismol Soc Am 89(3):559–578Google Scholar
  25. Frankel A (1995) Mapping seismic hazard in the Central and Eastern United States. Seismol Res Lett 66(4):8–21CrossRefGoogle Scholar
  26. Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(15):1363–1367Google Scholar
  27. Gasperini P, Lolli B, Vannucci G (2013) Empirical calibration of local magnitude data sets versus moment magnitude. Bull Seismol Soc Am 103:2227–2246CrossRefGoogle Scholar
  28. Gruppo di Lavoro (2004) Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004. +5 appendici (in Italian).
  29. Gutenberg B, Richter CF (1949) Seismicity of the earth and associated phenomena. Princeton University Press, PrincetonGoogle Scholar
  30. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350. doi: 10.1029/JB084iB05p02348 CrossRefGoogle Scholar
  31. Harris RA, Simpson RW (1998) Suppression of large earthquakes by stress shadows: a comparison of Coulomb and rate-and-state failure. J Geophys Res 103(B10):24439–24451CrossRefGoogle Scholar
  32. ISIDe Working Group (2015) Italian seismological instrumental and parametric data-base. Accessed 1 Sept 2015
  33. Jenny S, Goes S, Giardini D, Kahle H-G (2006) Seismic potential of Southern Italy. Tectonophysics 415:81–101CrossRefGoogle Scholar
  34. Joyner WB, Boore DM (1981) Peak acceleration and velocity from strong motion records including records from the 1979 Imperial valley, California, earthquake. Bull Seismol Soc Am 71:2011–2038Google Scholar
  35. King GCP, Cocco M (2001) Fault interaction by elastic stress changes: new clues from earthquake sequences. Adv Geophys 44:1–39CrossRefGoogle Scholar
  36. King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953Google Scholar
  37. Kostrov B, Das S (1998) Principles of earthquake source mechanics. Cambridge University Press, CambridgeGoogle Scholar
  38. Lin PS, Lee CT (2008) Ground-motion attenuation relationships for subduction zone earthquakes in northeastern Taiwan. Bull Seismol Soc Am 98:220–240CrossRefGoogle Scholar
  39. Matthews MV, Ellsworth WL, Reasenberg PA (2002) A Brownian model for recurrent earthquakes. Bull Seism Soc Am 92:2233–2250CrossRefGoogle Scholar
  40. Montaldo V, Faccioli E, Zonno G, Akinci A, Malagnini L (2005) Treatment of ground-motion predictive relationships for the reference seismic hazard map of Italy. J Seismol 9(3):295–316CrossRefGoogle Scholar
  41. Montone P, Mariucci MT, Pierdominici S (2012) The Italian present-day stress map. Geophys J Int 189(2):705–716CrossRefGoogle Scholar
  42. Murru M, Akinci A, Falcone G, Pucci S, Console R, Parsons T (2016) M ≥ 7 earthquake rupture forecast and time-dependent probability for the sea of Marmara region, Turkey. J Geophys Res. doi: 10.1002/2015JB012595 Google Scholar
  43. Nocquet J-M (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics 579:220–242. doi: 10.1016/j.tecto.2012.03.037 CrossRefGoogle Scholar
  44. Okada Y (1985) Surface deformation due to shear and tensile faults in an half-space. Bull Seismol Soc Am 75(4):1135–1154Google Scholar
  45. Okada Y (1992) Internal deformation due to shear and tensile faults in an half-space. Bull Seismol Soc Am 82(2):1018–1040Google Scholar
  46. Pace B, Peruzza L, Lavecchia G, Boncio P (2006) Layered seismogenic source model and probabilistic seismic-hazard analyses in central Italy. Bull Seismol Soc Am 96:107–132CrossRefGoogle Scholar
  47. Pace B, Bocchini GM, Boncio P (2014) Do static stress changes of a moderate-magnitude earthquake significantly modify the regional seismic hazard? Hints from the L’Aquila 2009 normalfaulting earthquake (Mw 6.3, central Italy). Terra. doi: 10.1111/ter.12117 Google Scholar
  48. Paradisopoulou PM, Papadimitriou EE, Karakostas VG, Taymaz T, Kilias A, Yolsal S (2010) Seismic hazard evaluation in western Turkey as revealed by stress transfer and time-dependent probability calculations. Pure Appl Geophys 167:1013–1048CrossRefGoogle Scholar
  49. Parsons T (2005) Significance of stress transfer in time–dependent earthquake probability calculations. J Geophys Res. doi: 10.129/2003JB002667 Google Scholar
  50. Parsons T, Toda S, Stein RS, Barka A, Dietrich JH (2000) Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation. Science 288:661–665CrossRefGoogle Scholar
  51. Peruzza L, Pantosti D, Slejko D, Valensise G (1997) Testing a new hybrid approach to seismic hazard assessment: an application to the Calabria Arc (Southern Italy). Nat Hazard 14:113–126CrossRefGoogle Scholar
  52. Petersen MD, Cramer CH, Reichle MS, Frankel AD, Hanks TC (2000) Discrepancy between earthquake rates implied by historic earthquakes and a consensus geologic source model for California. Bull Seismol Soc Am 90:1117–1132CrossRefGoogle Scholar
  53. Petersen MD, Cao T, Campbell KW, Frankel AD (2007) Time-independent and time-dependent seismic hazard assessment for the state of California: uniform California earthquake rupture forecast model 1.0. Seismol Res Lett 78:99–109CrossRefGoogle Scholar
  54. Petersen MD, Frankel AD, Harmsen SC, Mueller CS, Haller KM, Wheeler RL, Wesson RL, Zeng Y, Boyd OS, Perkins DM, Luco N, Field EH, Wills CJ, Ruksatles KS (2008) Documentation for the 2008 update of the United States national seismic hazard maps, US Geol Surv Open-File Rept 2008–1128Google Scholar
  55. Polonia A, Torelli L, Mussoni P, Gasperini L, Artoni A, Klaeschen D (2011) The Calabrian Arc subduction complex in the Ionian Sea: regional architecture, active deformation, and seismic hazard. Tectonics. doi: 10.1029/2010TC002821 Google Scholar
  56. Rebez A, Sandron D, Santulin M, Peruzza L, Tamaro A, Eusebio M, Mucciarelli M, Slejko D (2014) Input accelerograms and expected accelerations for some dam sites in Southern Italy. Proceedings of the 33rd conference of the gruppo nazionale di geofisica della terra solida (GNGTS), Bologna, Italy, 25–27 NovGoogle Scholar
  57. Rovida A, Camassi R, Gasperini P, Stucchi M (eds) (2011) CPTI11, the 2011 version of the parametric catalogue of Italian earthquakes, Milano, Bologna. doi: 10.6092/INGV.IT-CPTI11. Accessed 1 July 2014
  58. Slejko D, Peruzza L, Rebez A (1998) Seismic hazard maps of Italy. Ann Geofis 41:183–214Google Scholar
  59. Stein RS, Barka AA, Dieterich JH (1997) Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys J Int 128:594–604CrossRefGoogle Scholar
  60. Stirling M, Petersen M (2006) Comparison of the historical record of earthquake hazard with seismic-hazard models for New Zealand and the continental United States. Bull Seismol Soc Am 96:1978–1994CrossRefGoogle Scholar
  61. Stucchi M, Meletti C, Montaldo V, Crowley H, Calvi GM, Boschi E (2011) Seismic hazard assessment (2003-2009) for the Italian Building Code. Bull Seismol Soc Am 101:1885–1911CrossRefGoogle Scholar
  62. Tiberti MM, Vannoli P, Fracassi U, Burrato P, Kastelic V, Valensise G (2016) Understanding seismogenic processes in the Southern Calabrian Arc: a geodynamic perspective. Accepted for publication on Ital J Geosc, 13 Sept 2016Google Scholar
  63. Toda S, Stein RS (2002) Response of the San Andreas fault to the 1983 Coalinga–Nuñez earthquakes: an application of interaction-based probabilities for Parkfield. J Geophys Res. doi: 10.1029/2001JB000172 Google Scholar
  64. Vannoli P, Burrato P, Valensise G (2015) The seismotectonic of the Po Plain (northern Italy): tectonic diversity in a blind faulting domain. Pure Appl Geophys 172(5):1105–1142. doi: 10.1007/s00024-014-0873-0 CrossRefGoogle Scholar
  65. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70:1337–1346Google Scholar
  66. Wells DL, Coppersmith KJ (1994) Empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002Google Scholar
  67. WGCEP (Working Group on California Earthquake Probabilities) (1995) Seismic hazards in Southern California: probable earthquakes, 1994 to 2024. Bull Seismol Soc Am 85:379–439Google Scholar
  68. Woessner J, Danciu L, Giardini D, Crowley H, Cotton F, Grünthal G, SHARE Consortium (2015) The 2013 European seismic hazard model: key components and results. Bull of Earthq Eng 13(12):3553–3596CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. Akinci
    • 1
    Email author
  • P. Vannoli
    • 1
  • G. Falcone
    • 1
  • M. Taroni
    • 1
  • M. M. Tiberti
    • 1
  • M. Murru
    • 1
  • P. Burrato
    • 1
  • M. T. Mariucci
    • 1
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly

Personalised recommendations