Advertisement

Bulletin of Earthquake Engineering

, Volume 15, Issue 5, pp 1853–1880 | Cite as

Ground motion prediction equations for the Chilean subduction zone

  • Benjamín Idini
  • Fabián Rojas
  • Sergio Ruiz
  • César Pastén
Original Research Paper

Abstract

The Chilean subduction zone is one of the most active in the world. Six events of magnitude greater than \(M_w = 7.5\) have occurred in the last 10 years, including the 2010 \(M_w = 8.8\) Maule, the 2014 \(M_w = 8.2\) Iquique, and the 2015 \(M_w = 8.3\) Illapel earthquakes. These events have produced a considerable dataset to study interface thrust and intraslab intermediate depth earthquakes. In this paper, we present a database of strong motion records for Chilean subduction zone earthquakes and develop a ground motion prediction equation (GMPE) for peak ground acceleration and response spectral accelerations with 5% damping ratio for periods between 0.01 and 10 s. The dynamic soil amplification effects are considered in a new empirical model based on two parameters, the predominant period of the soil (\(T^*\)) and the average shear wave velocity down to 30 m depth (\(V_{S30}\)). The spectral accelerations prediction equations at short periods are generated using 114 records of intraslab earthquakes (\(M_w\) = 5.5–7.8) and 369 records of interface earthquakes (\(M_w\) = 5.5–8.8); a reduced number of these records are used for longer periods. The proposed GMPE can predict the ground motion of large Chilean subduction earthquakes (\(M_w > 8\)) with no need of extrapolation from small-magnitude earthquake data. Intraslab earthquakes show a steeper attenuation slope than that of interface ones, which is consistent with other GMPE results derived from worldwide subduction zones data. Moreover, the Chilean interface earthquakes show a flatter attenuation slope relative to the Japanese ones.

Keywords

Ground motion prediction equations Chilean subduction zone Site effects Response spectra 

Notes

Acknowledgements

This study was partially financially supported by Chile’s National Commission on Scientific and Technological Research (CONICYT) for the Fondecyt Initiation into Research 2014 projects, National Research Funding Competition under Grant Nos. 11140429 and 11130230, and by CONICYT-PCHA/MagísterNacional/2014 - 22140466. We are grateful to RENADIC and CSN, both from the University of Chile, for transfering the raw data of their networks to us.

Supplementary material

10518_2016_50_MOESM1_ESM.txt (161 kb)
Supplementary material 1 (txt 161 KB)
10518_2016_50_MOESM2_ESM.jpg (1.5 mb)
Supplementary material 2 (jpg 1533 KB)
10518_2016_50_MOESM3_ESM.jpg (379 kb)
Supplementary material 3 (jpg 378 KB)
10518_2016_50_MOESM4_ESM.jpg (93 kb)
Supplementary material 4 (jpg 92 KB)
10518_2016_50_MOESM5_ESM.docx (15 kb)
Supplementary material 5 (docx 14 KB)

References

  1. Abrahamson N, Gregor N, Addo K (2016) BC hydro ground motion prediction equations for subduction earthquakes. Earthq Spectra 32(1):23–44. doi: 10.1193/051712EQS188MR CrossRefGoogle Scholar
  2. Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, SausalitoGoogle Scholar
  3. Akkar S, Bommer JJ (2006) Influence of long-period filter cut-off on elastic spectral displacements. Earthq Eng Struct 35(9):1145–1165. doi: 10.1002/eqe.577 CrossRefGoogle Scholar
  4. Atkinson GM, Boore DM (2003) Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 93(4):1703–1729. doi: 10.1785/0120020156 CrossRefGoogle Scholar
  5. Arango MC, Strasser FO, Bommer JJ, Boroschek R, Comte D, Tavera H (2011) A strong-motion database from the Peru–Chile subduction zone. J Seismol 15(1):19–41. doi: 10.1007/s10950-010-9203-x CrossRefGoogle Scholar
  6. Arango MC, Strasser FO, Bommer JJ, Cepeda JM, Boroschek R, Hernandez DA, Tavera H (2012) An evaluation of the applicability of current ground-motion models to the south and central American subduction zones. Bull Seismol Soc Am 102(1):143–168. doi: 10.1785/0120110078 CrossRefGoogle Scholar
  7. Arroyo D, García D, Ordaz M, Mora MA, Singh SK (2010) Strong ground-motion relations for Mexican interplate earthquakes. J Seismol 14(4):769–785. doi: 10.1007/s10950-010-9200-0 CrossRefGoogle Scholar
  8. Béjar-Pizarro M, Carrizo D, Socquet A, Armijo R, Barrientos S, Bondoux F, Bonvalot S, Campos J, Comte D, de Chabalier JB, Charade O, Delorme A, Gabalda G, Galetzka J, Genrich J, Nercessian A, Olcay M, Ortega F, Ortega I, Remy D, Ruegg JC, Simons M, Valderas C, Vigny C (2010) Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophys J Int 183(1):390–406CrossRefGoogle Scholar
  9. Bommer JJ, Douglas J, Scherbaum F, Cotton F, Bungum H, Fäh D (2010) On the selection of ground-motion prediction equations for seismic hazard analysis. Seismol Res Lett 81(5):783–793. doi: 10.1785/gssrl.81.5.783 CrossRefGoogle Scholar
  10. Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160(3–4):635–676. doi: 10.1007/PL00012553 CrossRefGoogle Scholar
  11. Boore DM (2005) On pads and filters: processing strong-motion data. Bull Seismol Soc Am 95(2):745–750. doi: 10.1785/0120040160 CrossRefGoogle Scholar
  12. Boore DM, Bommer JJ (2005) Processing of strong-motion accelerograms: needs, options and consequences. Soil Dyn Earthq Eng 25(2):93–115. doi: 10.1016/j.soildyn.2004.10.007 CrossRefGoogle Scholar
  13. Boore DM, Goulet CA (2014) The effect of sampling rate and anti-aliasing filters on high-frequency response spectra. Bull Earthq Eng 12(1):203–216. doi: 10.1007/s10518-013-9574-9 CrossRefGoogle Scholar
  14. Boroschek RL, Contreras V, Kwak DY, Stewart JP (2012) Strong ground motion attributes of the 2010 \(M_w\) Maule, Chile, earthquake. Earthq Spectra 28(S1):19–38. doi: 10.1193/1.4000045 CrossRefGoogle Scholar
  15. Choi Y, Stewart JP (2005) Nonlinear site amplification as function of 30 m shear wave velocity. Earthq Spectra 21(1):1–30. doi: 10.1193/1.1856535 CrossRefGoogle Scholar
  16. Christensen DH, Ruff LJ (1986) Rupture process of the March 3, 1985 Chilean earthquake. Geophys Res Lett 13(8):721–724CrossRefGoogle Scholar
  17. Contreras V, Boroschek R (2012) Strong ground motion attenuation relations for Chilean subduction zone interface earthquakes. In: Proccedings in 15th world conference on earthquake engineering, Lisboa, PortugalGoogle Scholar
  18. Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to central Europe and rock sites. J Seismol 10(2):137–156. doi: 10.1007/s10950-005-9006-7 CrossRefGoogle Scholar
  19. Di Alessandro C, Bonilla LF, Boore DM, Rovelli A, Scotti O (2012a) Predominant-period site classification for response spectra prediction equations in Italy. Bull Seismol Soc Am 102(2):680–695. doi: 10.1785/0120110084 CrossRefGoogle Scholar
  20. Di Alessandro C, Bozorgnia Y, Abrahamson NA, Akkar S, Erdik M (2012b) GEM-PEER global ground motion prediction equations project: an overview. In: Proccedings in the 15th world conference on earthquake engineering, pp 24–28Google Scholar
  21. Dobry R, Borcherdt RD, Crouse CB, Idriss IM, Joyner WB, Martin GR, Power MS, Rinne EE, Seed RB (2000) New site coefficients and site classification system used in recent building seismic code provisions. Earthquake Spectra 16(1):41–67CrossRefGoogle Scholar
  22. Douglas J, Boore DM (2011) High-frequency filtering of strong-motion records. Bull Earthq Eng 9(2):395–409. doi: 10.1007/s10518-010-9208-4 CrossRefGoogle Scholar
  23. Edwards B, Fäh D (2013) Measurements of stress parameter and site attenuation from recordings of moderate to large earthquakes in Europe and the Middle East. Geophys J Int 194(2):1190–1202. doi: 10.1093/gji/ggt158 CrossRefGoogle Scholar
  24. Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200–201:1–9. doi: 10.1016/j.pepi.2012.04.002 CrossRefGoogle Scholar
  25. Engdahl ER, Villaseñor A (2002) 41 Global seismicity: 1900–1999. Int Geophysics 81:665-XVICrossRefGoogle Scholar
  26. Fundación Chile de Investigación Geotécnica (FUCHIGE). www.fuchige.cl. Accessed Dec 2015
  27. Fukushima Y, Bonilla LF, Scotti O, Douglas J (2007) Site classification using horizontal-to-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations. J Earthq Eng 11(5):712–724CrossRefGoogle Scholar
  28. García D, Singh SK, Herráiz M, Ordaz M, Pacheco JF (2005) Inslab earthquakes of central Mexico: peak ground-motion parameters and response spectra. Bull Seismol Soc Am 95(6):2272–2282. doi: 10.1785/0120050072 CrossRefGoogle Scholar
  29. Gregor NJ, Silva WJ, Wong IG, Youngs RR (2002) Ground-motion attenuation relationships for Cascadia subduction zone megathrust earthquakes based on a stochastic finite-fault model. Bull Seismol Soc Am 92(5):1923–1932. doi: 10.1785/0120000260 CrossRefGoogle Scholar
  30. Hayes GP, Wald DJ, Johnson RL (2012) Slab1.0: A three-dimensional model of global subduction zone geometries. J Geophys Res 117(B1): doi: 10.1029/2011JB008524
  31. International Seismological Centre (ISC). www.isc.ac.uk/iscbulletin. Accessed Oct 2015
  32. Joyner WB, Boore DM (1993) Methods for regression analysis of strong-motion data. Bull Seismol Soc Am 103(2A):1069–1084Google Scholar
  33. Lin PS, Lee CT (2008) Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bull Seismol Soc Am 98(1):220–240. doi: 10.1785/0120060002 CrossRefGoogle Scholar
  34. McVerry GH, Zhao JX, Abrahamson NA, Somerville PG (2006) New Zealand acceleration response spectrum attenuation relations for crustal and subduction zone earthquakes. Bull N Z Soc Earthq Eng 39(1):1–58Google Scholar
  35. Mendoza M, Hartzell S, Monfret T (1994) Wide-band analysis of the 3 March 1985 Central Chile earthquake: overall source process and rupture history. B Seismol Soc Am 84(2):269–283Google Scholar
  36. Moreno M, Melnick D, Rosenau M, Baez J, Klotz J, Oncken O, Tassara A, Chen J, Bataille K, Bevis M, Socquet A, Bolte J, Vigny C, Brooks B, Ryder I, Grund V, Smalley B, Carrizo D, Bartsch M, Hase H (2012) Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet Sci Lett 321–322:152–165CrossRefGoogle Scholar
  37. Nakamura, Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, vol 30, no 1Google Scholar
  38. National Accelerometer Network of the Department of Civil Engineering (RENADIC), University of Chile. terremotos.ing.uchile.cl. Accessed Oct 2015
  39. National Seismological Center (CSN), University of Chile. www.sismologia.cl. Accessed Oct 2015
  40. Otarola C, Ruiz S (2016) Stochastic generation of accelerograms for subduction earthquakes. Bull Seismol Soc Am 106(6): doi: 10.1785/0120150262 Google Scholar
  41. Peyrat S, Madariaga R, Buforn E, Campos J, Asch G, Vilotte JP (2010) Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strong-motion data. Geophys J Int 182(3):1411–1430. doi: 10.1111/j.1365-246X.2010.04685.x CrossRefGoogle Scholar
  42. Power M, Chiou B, Abrahamson N, Bozorgnia Y, Shantz T, Roblee C (2008) An overview of the NGA project. Earthq Spect 24(1):3–21. doi: 10.1193/1.2894833 CrossRefGoogle Scholar
  43. Ruiz S, Saragoni RG (2008) Two peaks response spectra (2PRS) for subduction earthquakes considering soil and source effects. In: Proccedings in the 14th world conference on earthquake engineering, Beijing, China, OctoberGoogle Scholar
  44. Ruiz S, Madariaga R, Astroza M, Saragoni GR, Lancieri M, Vigny C, Campos J (2012) ort-period rupture process of the 2010 \(M_w\) 8.8 Maule earthquake in Chile. Earthq Spectra 28(S1):S1–S18. doi: 10.1193/1.4000039 CrossRefGoogle Scholar
  45. Ruiz S, Metois M, Fuenzalida A, Ruiz J, Leyton F, Grandin R, Vigny C, Madariaga R, Campos J (2014) Intense foreshocks and a slow slip event preceded the 2014 Iquique \(M_w\) 8.1 earthquake. Science 345(6201):1165–1169. doi: 10.1126/science.1256074 CrossRefGoogle Scholar
  46. Ruiz S, Klein E, del Campo F, Rivera E, Poli P, Metois M, Christophe V, Baez JC, Vargas G, Leyton F, Madariaga R, Fleitout L (2016) The seismic sequence of the 16 Illapel, Chile, earthquake. Seismol Res Lett. doi: 10.1785/0220150281 Google Scholar
  47. Scherbaum F, Cotton F, Smit P (2004) On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: the case of rock motion. Bull Seismol Soc Am 94(6):2164–2185. doi: 10.1785/0120030147 CrossRefGoogle Scholar
  48. Schurr B, Asch G, Hainzl S, Bedford J, Hoechner A, Palo M, Wang R, Moreno M, Bartsch M, Zhang Y, Oncken O, Tilmann F, Dahm T, Victor P, Barrientos S, Vilotte J-P (2014) Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512(7514):299–302. doi: 10.1038/nature13681 CrossRefGoogle Scholar
  49. Skarlatoudis AA, Papazachos CB, Margaris BN, Ventouzi C, Kalogeras I, EGELADOS Group (2013) Ground-motion prediction equations of intermediate-depth earthquakes in the Hellenic arc, southern Aegean subduction area. Bull Seismol Soc Am 103(3):1952–1968. doi: 10.1785/0120120265
  50. Stewart JP, Douglas J, Javanbarg M, Bozorgnia Y, Abrahamson NA, Boore DM, Campbell KW, Delavaud E, Erdik M, Stafford PJ (2015) Selection of ground motion prediction equations for the global earthquake model. Earthq Spectra 31(1):19–45. doi: 10.1193/013013EQS017M CrossRefGoogle Scholar
  51. Vigny C, Socquet A, Peyrat S, Ruegg C, Métois M, Madariaga R, Morvan S, Lancieri M, Lacassin R, Campos J, Carrizo D, Bejar-Pizarro M, Barrientos S, Armijo R, Aranda C, Valderas-Bermejo M-C, Ortega I, Bondoux F, Baize S, Lyon-Caen H, Pavez A, Vilotte JP, Bevis M, Brooks B, Smalley R, Parra H, Baez J-C, Blanco M, Cimbaro S, Kendrick E (2011) The 2010 \(M_w\) 8.8 Maule Megathrust earthquake of Central Chile, monitored by GPS. Science 332(6036):1417–1421. doi: 10.1126/science.1204132 CrossRefGoogle Scholar
  52. Youngs RR, Chiou S-J, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol Res Lett 68(1):58–73. doi: 10.1785/gssrl.68.1.58 CrossRefGoogle Scholar
  53. Zhao JX, Irikura K, Zhang J, Fukushima Y, Somerville PG, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H (2006a) An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bull Seismol Soc Am 96(3):914–925CrossRefGoogle Scholar
  54. Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y, Fukushima Y (2006b) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96(3):898–913. doi: 10.1785/0120050122 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of ChileSantiagoChile
  2. 2.Advanced Mining Technology Center, FCFMUniversity of ChileSantiagoChile
  3. 3.Department of GeophysicsUniversity of ChileSantiagoChile

Personalised recommendations