Bulletin of Earthquake Engineering

, Volume 15, Issue 4, pp 1471–1496 | Cite as

Probabilistic mechanics-based loss scenarios for school buildings in Basel (Switzerland)

  • Clotaire Michel
  • Pia Hannewald
  • Pierino Lestuzzi
  • Donat Fäh
  • Stephan Husen
Original Research Paper

Abstract

Developing earthquake scenarios for cities in areas with a moderate seismicity is a challenge due to the limited amount of available data, which is a source of large uncertainties. This concerns both the seismic hazard, for which only recordings for small earthquakes are available and the unknown earthquake resistance of the majority of structures not designed for seismic loading. The goal of the present study is to develop coherent probabilistic mechanics-based scenarios for a mid-size building stock including a comprehensive analysis of the uncertainties. As an application, a loss assessment for the school buildings of the city of Basel is performed for different scenarios of historical significance, such as the 1356 event, and from the deaggregation of the Swiss Probabilistic Seismic Hazard Model of 2015. The hazard part of the computations (i.e. ground motion estimation) is based on this model, a regional microzonation and recordings of small earthquakes on a dense strong motion network to compute site-amplification factors. The school buildings, which are mainly unreinforced masonry or reinforced concrete shear wall buildings, have been classified according to a specifically developed taxonomy. Fragility curves have been developed using non-linear static procedures and subsequently, vulnerability curves in terms of human and financial losses are proposed. The computations have been run with the OpenQuake engine, carefully propagating all the recognized uncertainties. Scenarios before and after retrofitting measures show their impact on the earthquake safety. A sensitivity analysis shows that the largest uncertainties come from the ground motion prediction although an improvement of all parts of the model is necessary to decrease the uncertainties. Although improved data and models are still necessary to be developed, probabilistic mechanics-based models outperform the capabilities of deterministic and/or empirical models for retrieving realistic earthquake loss distributions.

Keywords

Loss assessment Seismic hazard Vulnerability Uncertainty Mechanical Existing buildings 

Notes

Acknowledgments

This work has been funded by the Cantonal Crisis Organisation (KKO) of the Canton Basel-Stadt. The authors thank Laurentiu Danciu who provided the results of the hazard disaggregation. The authors also thank the two anonymous reviewers who helped improve the manuscript.

References

  1. Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the mediterranean region, and the middle east. Seismol Res Lett 81(2):195–206. doi: 10.1785/gssrl.81.2.195 CrossRefGoogle Scholar
  2. Akkar S, Sandikkaya MA, Ay BO (2014a) Compatible ground-motion prediction equations for damping scaling factors and vertical-to-horizontal spectral amplitude ratios for the broader Europe region. Bull Earthq Eng 12:517–547. doi: 10.1007/s10518-013-9537-1 CrossRefGoogle Scholar
  3. Akkar S, Sandikkaya MA, Bommer JJ (2014b) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the middle east. Bull Earthq Eng 12:359–387. doi: 10.1007/s10518-013-9461-4 CrossRefGoogle Scholar
  4. Alexander D, Magni M (2013) Mortality in the L’Aquila (Central Italy) earthquake of 6 April 2009: a study in victimisation. PLoS Curr Disasters 1(January):1–26. doi: 10.1371/50585b8e6efd1 Google Scholar
  5. Bal IE, Crowley H, Pinho R (2008) Displacement-based earthquake loss assessment for an earthquake scenario in Istanbul. J Earthq Eng 12:12–22. doi: 10.1080/13632460802013388 CrossRefGoogle Scholar
  6. Barbat AH, Carreño ML, Pujades LG, Lantada N, Cardona OD, Marulanda MC (2010) Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng 6(1–2):17–38. doi: 10.1080/15732470802663763 CrossRefGoogle Scholar
  7. Borzi B, Crowley H, Pinho R (2008) Simplified pushover-based earthquake loss assessment (SP-BELA) method for masonry buildings. Int J Archit Herit Conserv Anal Restor 2(4):353–376. doi: 10.1080/15583050701828178 CrossRefGoogle Scholar
  8. Cauzzi C, Edwards B, Fäh D, Clinton J, Wiemer S, Kastli P et al (2015) New predictive equations and site amplification estimates for the next-generation Swiss ShakeMaps. Geophys J Int 200:421–438. doi: 10.1093/gji/ggu404 CrossRefGoogle Scholar
  9. Chaulagain H, Rodrigues H, Silva V, Spacone E, Varum H (2016) Earthquake loss estimation for the Kathmandu Valley. Bull Earthq Eng 14(1):59–88. doi: 10.1007/s10518-015-9811-5 CrossRefGoogle Scholar
  10. Coburn A, Spence R (2002) Earthquake Protection, 2nd edn. WileyGoogle Scholar
  11. Coburn A, Spence R, Pomonis A (1992) Factors determining human casualty levels in earthquakes: mortality prediction in building collapse. In: 10th World Conference of Earthquake Engineering (WCEE). Madrid, SpainGoogle Scholar
  12. Crowley H (2014) Earthquake risk assessment: present shortcomings and future directions. In: Ansal A (ed) Perspectives on European earthquake engineering and seismology, vol 34. Springer International Publishing, Berlin, pp 515–532. doi: 10.1007/978-3-319-07118-3 Google Scholar
  13. Crowley H, Pinho R, Bommer JJ (2004) A probabilistic displacement-based vulnerability assessment procedure for earthquake loss estimation. Bull Earthq Eng 2(2):173–219. doi: 10.1007/s10518-004-2290-8 CrossRefGoogle Scholar
  14. D’Ayala D, Spence R, Oliveira CS, Pomonis A (1997) Earthquake loss estimation for Europe’s historic town centres. Earthq Spectra 13(4):773–793. doi: 10.1193/1.1585980 CrossRefGoogle Scholar
  15. Edwards B, Fäh D (2013) A stochastic ground-motion model for Switzerland. Bull Seismol Soc Am 103(1):78–98. doi: 10.1785/0120110331 CrossRefGoogle Scholar
  16. Edwards B, Michel C, Poggi V, Fäh D (2013) Determination of site amplification from regional seismicity: application to the swiss national seismic networks. Seismol Res Lett 84(4):611–621. doi: 10.1785/0220120176 CrossRefGoogle Scholar
  17. Edwards B, Cauzzi C, Danciu L, Fäh D (2016) Region-specific assessment, adjustment and weighting of ground motion prediction models: application to the 2015 Swiss seismic hazard maps. Bull Seismol Soc Am 106(4):1840–1857. doi: 10.1785/0120150367 CrossRefGoogle Scholar
  18. Elms DG (1985) Principle of consistent crudeness. In: Workshop on Civil Engineering Applications of Fuzzy Sets. Purdue University, West Lafayette, IN, USAGoogle Scholar
  19. Esposito S, Iervolino I (2012) Spatial correlation of spectral acceleration in European data. Bull Seismol Soc Am 102(6):2781–2788. doi: 10.1785/0120120068 CrossRefGoogle Scholar
  20. Faenza L, Michelini A (2010) Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap. Geophys J Int 180:1138–1152. doi: 10.1111/j.1365-246X.2009.04467.x CrossRefGoogle Scholar
  21. Fäh D, Huggenberger P (2006) INTERREG III Projekt: erdbebenmikrozonierung am südlichen Oberrhein. Zusammenfassung. doi: 10.3929/ethz-a-006412199 Google Scholar
  22. Fäh D, Kind F, Lang K, Giardini D (2001) Earthquake scenarios for the city of Basel. Soil Dyn Earthq Eng 21:405–413CrossRefGoogle Scholar
  23. Fäh D, Steimen S, Oprsal I, Ripperger J, Wössner J, Schatzmann R et al (2006) The earthquake of 250 AD in Augusta Raurica, a real event with a 3D site-effect? J Seismol 10(4):459–477. doi: 10.1007/s10950-006-9031-1 CrossRefGoogle Scholar
  24. Fäh D, Gisler M, Jaggi B, Kästli P, Lutz T, Masciadri V et al (2009) The 1356 Basel earthquake: an interdisciplinary revision. Geophys J Int 178(1):351–374. doi: 10.1111/j.1365-246X.2009.04130.x CrossRefGoogle Scholar
  25. Fajfar P (1999) Capacity spectrum method based on inelastic demand spectra. Earthq Eng Struct Dyn 28:979–993CrossRefGoogle Scholar
  26. FEMA (2005) Improvement of Nonlinear Static Seismic Analysis Procedures. FEMA 440, Federal Emergency Management Agency, Washington DCGoogle Scholar
  27. FEMA (2012) Multi-hazard loss estimation methodology: earthquake model. Hazus–MH 2.1: Technical Manual. www.fema.gov/plan/prevent/hazus
  28. Ferry M, Meghraoui M, Delouis B, Giardini D (2005) Evidence for holocene palaeoseismicity along the Basel–Reinach active normal fault (Switzerland): a seismic source for the 1356 earthquake in the Upper Rhine graben. Geophys J Int 160(2):554–572. doi: 10.1111/j.1365-246X.2005.02404.x CrossRefGoogle Scholar
  29. Gisler M, Fäh D (2011) Grundlagen des Makroseismischen Erdbebenkatalogs der Schweiz Band 2: 1681–1878 (Schweizeri). doi: 10.3218/3407-3
  30. Goulet J-A, Texier M, Michel C, Smith IFC, Chouinard LE (2014) Quantifying the effects of modeling simplifications for structural identification of bridges. J Bridge Eng 19(1):59–71. doi: 10.1061/(ASCE)BE.1943-5592.0000510 CrossRefGoogle Scholar
  31. Grünthal G, Musson RMW, Schwartz J, Stucchi M (1998) European macroseismic scale 1998, vol 15. Cahiers du Centre Européen de Géodynamique et de Séismologie, LuxembourgGoogle Scholar
  32. Hobiger M, Fäh D, Scherrer C, Michel C, Duvernay B, Clinton J, Cauzzi C, Weber F (2017) The renewal project of the Swiss Strong Motion Network SSMNet. In: Proceedings of 16th World Conference on Earthquake Engineering (16WCEE), paper 433, Santiago (Chile)Google Scholar
  33. Jaiswal K, Wald DJ, Earle PS, Porter KA, Hearne M (2011) Earthquake casualty models within the USGS prompt assessment of global earthquakes for response (PAGER) system. In: Spence R, So E, Scawthorn C (eds) Human Casualties in Earthquakes. Springer, Berlin, pp 83–94. doi: 10.1007/978-90-481-9455-1
  34. Jamali ND, Kölz E (2015) Seismic risk for existing buildings framework for risk computation. Technical report. Federal Office for the Environment, BernGoogle Scholar
  35. Jayaram N, Baker JW (2009) Correlation model for spatially distributed ground-motion intensities. Earthq Eng Struct Dyn 38(15):1687–1708. doi: 10.1002/eqe.922 CrossRefGoogle Scholar
  36. Kappos AJ, Panagopoulos G, Panagiotopoulos C, Penelis G (2006) A hybrid method for the vulnerability assessment of R/C and URM buildings. Bull Earthq Eng 4(4):391–413. doi: 10.1007/s10518-006-9023-0 CrossRefGoogle Scholar
  37. Kircher CA, Reitherman RK, Whitman RV, Arnold C (1997) Estimation of earthquake losses to buildings. Earthq Spectra 13(4):703–720. doi: 10.1193/1.1585976 CrossRefGoogle Scholar
  38. Kircher CA, Whitman RV, Holmes WT (2006) HAZUS earthquake loss estimation methods. Nat Hazards Rev 7(2):45–59. doi: 10.1061/(ASCE)1527-6988(2006)7:2(45) CrossRefGoogle Scholar
  39. Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4(4):415–443. doi: 10.1007/s10518-006-9024-z CrossRefGoogle Scholar
  40. Lagomarsino S, Cattari S, Pagnini LC, Parodi S (2010) Method (s) for large scale damage assessment, including independent verification of their effectiveness and uncertainty estimation. Research reportGoogle Scholar
  41. Lang K, Bachmann H (2004) On the seismic vulnerability of existing buildings: a case study of the city of Basel. Earthq Spectra 20(1):43–66. doi: 10.1193/1.1648335 CrossRefGoogle Scholar
  42. Lin Y, Miranda E (2008) Noniterative equivalent linear method for evaluation of existing structures. J Struct Eng 134(11):1685–1695. doi: 10.1061/(ASCE)0733-9445(2008)134:11(1685) CrossRefGoogle Scholar
  43. Lin Y-Y, Miranda E (2009) Evaluation of equivalent linear methods for estimating target displacements of existing structures. Eng Struct 31(12):3080–3089. doi: 10.1016/j.engstruct.2009.08.009 CrossRefGoogle Scholar
  44. Michel C, Fäh D (2016) Basel earthquake risk mitigation: computation of scenarios for school buildings, Technical Report, ETH-Zürich, Zürich, Switzerland, pp 69. doi: 10.3929/ethz-a-010646514
  45. Michel C, Guéguen P, Lestuzzi P, Bard P (2010) Comparison between seismic vulnerability models and experimental dynamic properties of existing buildings in France. Bull Earthq Eng 8(6):1295–1307. doi: 10.1007/s10518-010-9185-7 CrossRefGoogle Scholar
  46. Michel C, Zapico B, Lestuzzi P, Molina FJ, Weber F (2011) Quantification of fundamental frequency drop for unreinforced masonry buildings from dynamic tests. Earthq Eng Struct Dyn 40:1283–1296. doi: 10.1002/eqe.1088 CrossRefGoogle Scholar
  47. Michel C, Guéguen P, Causse M (2012) Seismic vulnerability assessment to slight damage based on experimental modal parameters. Earthq Eng Struct Dyn 41(1):81–98. doi: 10.1002/eqe.1119 CrossRefGoogle Scholar
  48. Michel C, Lestuzzi P, Lacave C (2014a) Simplified non-linear seismic displacement demand prediction for low period structures. Bull Earthq Eng 12(4):1563–1581. doi: 10.1007/s10518-014-9585-1 CrossRefGoogle Scholar
  49. Michel C, Edwards B, Poggi V, Burjánek J, Roten D, Cauzzi C, Fäh D (2014b) Assessment of site effects in alpine regions through systematic site characterization of seismic stations. Bull Seismol Soc Am 104(6):2809–2826. doi: 10.1785/0120140097 CrossRefGoogle Scholar
  50. Michel C, Fäh D, Edwards B, Cauzzi C (2016a) Site amplification at the city scale in Basel (Switzerland) from geophysical site characterization and spectral modelling of recorded earthquakes. Phys Chem Earth Parts A/B/C. doi: 10.1016/j.pce.2016.07.005 Google Scholar
  51. Michel C, Crowley H, Hannewald P, Lestuzzi P, Fäh D (2016b) Deriving fragility functions from bilinearized capacity curves using the conditional spectrum. submitted to Earthq Eng Struct DynGoogle Scholar
  52. Mignan A, Landtwing D, Kästli P, Mena B, Wiemer S (2015) Induced seismicity risk analysis of the 2006 Basel, Switzerland, enhanced geothermal system project: influence of uncertainties on risk mitigation. Geothermics 53:133–146. doi: 10.1016/j.geothermics.2014.05.007 CrossRefGoogle Scholar
  53. Mouroux P, Le Brun B (2006) Presentation of RISK-UE project. Bull Earthq Eng 4(4):323–339. doi: 10.1007/s10518-006-9020-3 CrossRefGoogle Scholar
  54. Poggi V, Edwards B, Fäh D (2011) Derivation of a reference shear-wave velocity model from empirical site amplification. Bull Seismol Soc Am 101(1):258–274. doi: 10.1785/0120100060 CrossRefGoogle Scholar
  55. Résonance (2016) Basel earthquake risk mitigation: capacity curves of school buildings, Technical Report, ETH-Zürich, Zürich, Switzerland, pp 67. doi: 10.3929/ethz-a-010647300
  56. Ripperger J, Kästli P, Fäh D, Giardini D (2009) Ground motion and macroseismic intensities of a seismic event related to geothermal reservoir stimulation below the city of Basel: observations and modelling. Geophys J Int 179(3):1757–1771. doi: 10.1111/j.1365-246X.2009.04374.x CrossRefGoogle Scholar
  57. Schwarz-Zanetti G, Fäh D (2011) Grundlagen des Makroseismischen Erdbebenkatalogs der Schweiz Band 1: 1000-1680 (Schweizeri.). doi: 10.3218/3407-3
  58. SIA (2004) Merkblatt SIA 2018: Überprüfung bestehender Gebäude bezüglich Erdbeben. ZürichGoogle Scholar
  59. Silva V, Crowley H, Pinho R, Varum H (2013) Extending displacement-based earthquake loss assessment (DBELA) for the computation of fragility curves. Eng Struct 56:343–356. doi: 10.1016/j.engstruct.2013.04.023 CrossRefGoogle Scholar
  60. Silva V, Crowley H, Pagani M, Monelli D, Pinho R (2014) Development of the openquake engine, the global earthquake model’s open-source software for seismic risk assessment. Nat Hazards 72(3):1409–1427. doi: 10.1007/s11069-013-0618-x CrossRefGoogle Scholar
  61. Silva V, Crowley H, Varum H, Pinho R (2015) Seismic risk assessment for mainland Portugal. Bull Earthq Eng 13:429–457. doi: 10.1007/s10518-014-9630-0 CrossRefGoogle Scholar
  62. So E, Spence R (2013) Estimating shaking-induced casualties and building damage for global earthquake events: a proposed modelling approach. Bull Earthq Eng 11:347–363. doi: 10.1007/s10518-012-9373-8 CrossRefGoogle Scholar
  63. Spence R (2007) LESSLOSS Report 2007/07: Earthquake Disaster Scenario Predictions & Loss Modelling for Urban Areas. IUSS PressGoogle Scholar
  64. Spence R, Bommer JJ, Del Re D, Bird JF, Aydinoglu N, Tabuchi S (2003) Comparing loss estimation with observed damage: a study of the 1999 Kocaeli earthquake in Turkey. Bull Earthq Eng 1:83–113CrossRefGoogle Scholar
  65. Tertulliani A, Arcoraci L, Berardi M, Bernardini F, Camassi R, Castellano C et al (2010) An application of EMS98 in a medium-sized city: the case of L’Aquila (Central Italy) after the April 6, 2009 Mw 6.3 earthquake. Bull Earthq Eng 9(1):67–80. doi: 10.1007/s10518-010-9188-4 CrossRefGoogle Scholar
  66. Tyagunov S, Stempniewski L, Grünthal G, Wahlström R, Zschau J (2004) Vulnerability and risk assessment for earthquake prone cities. In: 13th World Conference on Earthquake Engineering. Vancouver, CanadaGoogle Scholar
  67. Veludo I, Teves-Costa P, Bard P (2013) Damage seismic scenarios for Angra do Heroísmo, Azores (Portugal). Bull Earthq Eng 11(2):423–453. doi: 10.1007/s10518-012-9399-y CrossRefGoogle Scholar
  68. Weatherill GA, Silva V, Crowley H, Bazzurro HP (2015) Exploring the impact of spatial correlations and uncertainties for portfolio analysis in probabilistic seismic loss estimation. Bull Earthq Eng 13(4):957–981. doi: 10.1007/s10518-015-9730-5 CrossRefGoogle Scholar
  69. Wiemer S, Danciu L, Edwards B, Marti M, Fäh D, Hiemer S, Wössner J, Cauzzi C, Kästli P, Kremer K (2016) Seismic hazard model 2015 for Switzerland. Zürich. doi: 10.12686/a2
  70. Wyss M, Kästli P (2007) Estimates of Regional Losses in Case of a Repeat of the 1356 Basel Earthquake, Technical reportGoogle Scholar
  71. Yu K, Chouinard LE, Rosset P (2016) Seismic vulnerability assessment for Montreal. Georisk Assess Manag Risk Eng Syst Geohazards 10(2):164–178. doi: 10.1080/17499518.2015.1106562 Google Scholar
  72. Zuccaro G, Cacace F (2011) Seismic casualty evaluation: the Italian model, an application to the L’Aquila 2009 event. In: Spence R, So E, Scawthorn C (eds) Human casualties in earthquakes. Springer, Berlin, pp 171–184. doi: 10.1007/978-90-481-9455-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Swiss Seismological Service (SED)Swiss Federal Institute of Technology of Zurich (ETHZ)ZurichSwitzerland
  2. 2.Résonance Ingénieurs-ConseilsCarougeSwitzerland
  3. 3.Applied Computing and Mechanics Laboratory (IMAC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  4. 4.Kantonslaboratorium BaselBaselSwitzerland

Personalised recommendations