Bulletin of Earthquake Engineering

, Volume 10, Issue 5, pp 1401–1429 | Cite as

On the influence of site conditions and earthquake magnitude on ground-motion within-earthquake correlation: analysis of PGA data from TSMIP (Taiwan) network

  • Vladimir SokolovEmail author
  • Friedemann Wenzel
  • Kuo-Liang Wen
  • Wen-Yu Jean
Original Research Paper


We analysed the within-earthquake correlation of ground motion using the strong-motion records accumulated by the TSMIP (Taiwan Strong Motion Instrumentation Program) network in Taiwan during 1993–2009. Two ground-motion prediction equations, which were recently developed for peak ground acceleration (PGA) in the region and based on moment and local magnitude and hypocentral distance, were used for the calculation and analysis of ground-motion residuals. We also used the database containing shear-wave velocity data averaged for the top 30 m of the soil column (Vs30) for the TSMIP stations. We showed that the within-earthquake correlation may vary significantly depending on site classes, gross geological features of the area, and magnitude of earthquakes, records of which dominate the analysed dataset. On the one hand, there is a prominent correspondence between the within-earthquake correlation of PGA residuals and spatial correlation of Vs30 values, which was estimated for particular geological structures (e.g., sedimentary filled basins and large plain areas). On the other hand, the high level of ground-motion correlation (or significant non-random component of residuals) may be caused by the joint influence of soft surface soil and thick sediments and by the path or azimuthal effects. The point-source approximation of extended fault and neglected hanging- and foot-wall effects may also result in non-random residuals. The application of empirical correction factors, which consider the magnitude of earthquakes, source-to-site distance and Vs30 value for given stations, allows for the effective reduction in the level of within-earthquake correlation, as well as the within-earthquake standard deviation. The results of the analysis may be used in practical estimates of seismic hazard, damage and loss for spatially distributed structures (portfolios, lifelines) in Taiwan, as well in other regions with similar geological characteristics.


Ground-motion correlation Seismic hazard and risk assessment TSMIP network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson NA, Youngs RR (1992) A stable algorithm for regression analysis using the random effects model. Bull Seismol Soc Am 82: 505–510Google Scholar
  2. Abrahamson N, Atkinson G, Boore D, Bozorgnia Y, Campbell K, Chiou B, Idriss IM, Silva W, Youngs R (2008) Comparison of the NGA ground-motion relations. Earthq Spectra 24(1): 45–66. doi: 10.1193/1.2924363 CrossRefGoogle Scholar
  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6): 716–723. doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  4. Alatik L, Abrahamson N, Bommer JJ, Scherbaum F, Cotton F, Kuehn N (2010) The variability of ground-motion prediction models and its components. Seismol Res Lett 81(5): 794–801. doi: 10.1785/gssrl.81.5.794 CrossRefGoogle Scholar
  5. Anderson JG, Uchiyama Y (2011) A methodology to improve ground-motion prediction equations by including path corrections. Bull Seismol Soc Am 101: 1822–1846. doi: 10.1785/0120090359 CrossRefGoogle Scholar
  6. Atkinson GM (2006) Single-station sigma. Bull Seismol Soc Am 96: 446–455. doi: 10.1785/0120050137 CrossRefGoogle Scholar
  7. Baker JW, Jayaram N (2008) Effects of spatial correlation of ground motion parameters for multi-site seismic risk assessment: collaborative research with Stanford University and AIR. Final Technical Report. Report for U.S. Geological Survey National Earthquake Hazards Reduction Program (NEHRP) External Research Program Award 07HQGR0031Google Scholar
  8. Boore DM, Gibbs JF, Joyner WB, Tinsley JC, Ponti DJ (2003) Estimated ground motion from the 1994 Northridge, California, Earthquake at the site of the Interstate 10 and La Cienega Boulevard Bridge collapse. West Los Angeles, California. Bull Seismol Soc Am 93: 2737–2751. doi: 10.1785/0120020197 CrossRefGoogle Scholar
  9. Boore DM, Joyner WB, Fumal TE (1997) Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Bull Seismol Soc Am 68: 128–153Google Scholar
  10. Brillinger DR, Preisler HK (1984) An exploratory analysis of the Joyner-Boore attenuation data. Bull Seismol Soc Am 74: 1441–1450Google Scholar
  11. Brillinger DR, Preisler HK (1985) Further analysis of the Joyner-Boore attenuation data. Bull Seismol Soc Am 75: 611–614Google Scholar
  12. Campbell KW, Thenhaus PC, Barnard TP, Hampson DB (2002) Seismic hazard model for loss estimation and risk management in Taiwan. Soil Dyn Earthq Eng 22: 743–754CrossRefGoogle Scholar
  13. Chen KJ (1998) S-wave attenuation structure in the Taiwan area and its correlation with seismicity. Terrest Atmos Ocean Sci (TAO) 9(1): 97–118Google Scholar
  14. Cheng CT, Chiou SJ, Lee CT, Tsai YB (2007) Study of probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. J GeoEng 2(1):19–28 Google Scholar
  15. Chung JK, Chen YL, Shin TC (2009) Spatial distribution of coda Q estimated from local earthquakes in Taiwan area. Earth Planets Space 61: 1077–1088Google Scholar
  16. Crowley H, Bommer JJ, Stafford PJ (2008) Recent developments in the treatment of ground- motion variability in earthquake loss model. J Earthq Eng 12(S): 71–80. doi: 10.1080/13632460802013529 CrossRefGoogle Scholar
  17. Crowley H, Stafford PJ, Bommer JJ (2008) Can earthquake loss models be validated using field observations?. J Earthq Eng 12: 1078–1104. doi: 10.1080/13632460802212923 CrossRefGoogle Scholar
  18. Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for estimation of peak ground acceleration and spectral ordinates. Earth Sci Rev 61: 43–104CrossRefGoogle Scholar
  19. Douglas J (2006) Errata and additions to “Ground motion estimation equations 1966–2003”, BRGM/RP-54603-FRGoogle Scholar
  20. Esposito S, Iervolino I (2011) PGA and PGV spatial correlation models based on European multievent datasets. Bull Seismol Soc Am 101: 2532–2541. doi: 10.1785/0120110117 CrossRefGoogle Scholar
  21. Furumura M, Furumura T, Wen KL (2001) Numerical simulation of Love wave generation in the Ilan Basin, Taiwan, during the 1999 Chi-Chi earthquake. Geoph Res Lett 28(17): 3385–3388CrossRefGoogle Scholar
  22. Goda K (2011) Interevent variability of spatial correlation of peak ground motions and response spectra. Bull Seismol Soc Am 101: 2522–2531. doi: 10.1785/0120110092 CrossRefGoogle Scholar
  23. Goda K., Atkinson GM (2009) Probabilistic characterization of spatially correlated response spectra for earthquakes in Japan. Bull Seismol Soc Am 99: 3003–3020. doi: 10.1785/0120090007 CrossRefGoogle Scholar
  24. Goda K, Atkinson GM (2010) Intraevent spatial correlation of ground-motion parameters using SK-net data. Bull Seismol Soc Am 100: 3055–3067. doi: 10.1785/0120100031 CrossRefGoogle Scholar
  25. Goda K, Hong HP (2008a) Spatial correlation of peak ground motions and response spectra. Bull Seismol Soc Am 98: 354–365. doi: 10.1785/0120070078 CrossRefGoogle Scholar
  26. Goda K, Hong HP (2008b) Estimation of seismic loss for spatially distributed buildings. Earthq Spectra 24: 889–910. doi: 10.1193/1.2983654 CrossRefGoogle Scholar
  27. Goovaerts P (1997) Geostatistics for Natural Resources Evaluation. Oxford Univ. Press, New-YorkGoogle Scholar
  28. Hong HP, Zhang Y, Goda K (2009) Effect of spatial correlation on estimated ground motion-prediction equations. Bull Seismol Soc Am 99: 928–934. doi: 10.1785/0120080172 CrossRefGoogle Scholar
  29. Hsu HM, Chao SJ, Hwang H (2008) Assessment of ground shaking in Ilan County, Taiwan. J Mar Sci Technol 16(4): 308–313Google Scholar
  30. Jayaram N, Baker JW (2009) Correlation model for spatially-distributed ground-motion intensities. Earthq Eng Struct Dyn 38: 1687–1708. doi: 10.1002/eqe.922 CrossRefGoogle Scholar
  31. Johnson ME (1987) Multivariate statistical simulation. Wiley Series in Probability and Mathematical Statistics, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  32. Joyner WB, Boore DM (1993) Methods for regression analysis of strong-motion data. Bull Seismol Soc Am 83: 469–487Google Scholar
  33. Kawakami H, Mogi H (2003) Analysing spatial intraevent variability of peak ground acceleration as a function of separation distance. Bull Seismol Soc Am 93: 1079–1090. doi: 10.1785/0120020026 CrossRefGoogle Scholar
  34. Kuo CH, Wen KL, Hsieh HH, Chang TM, Lin CM, Chen CT (2011) Evaluating empirical regression equations for Vs and estimating Vs30 in northeastern Taiwan. Soil Dyn Earthq Eng 31(3): 431–439. doi: 10.1016/j.soildyn.2010.09.012 CrossRefGoogle Scholar
  35. Kuo CH, Wen KL, Hsieh HH, Lin CM, Chang TM, Kuo KW (2012) Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Eng Geol (in press). doi: 10.1016/j.enggeo.2012.01.013
  36. Lee CT, Tsai BR (2008) Mapping Vs30 in Taiwan. Terrest Atmos Ocean Sci (TAO) 19: 671–682. doi: 10.3319/TAO.2008.19.6.671(PT) CrossRefGoogle Scholar
  37. Lee CT, Cheng CT, Liao CW, Tsai YB (2001) Site classification of Taiwan free-field strong-motion stations. Bull Seismol Soc Am 91: 1283–1297CrossRefGoogle Scholar
  38. Lin CM, Chang TM, Huang YC, Chiang HJ, Kuo CH, Wen KL (2009) Shallow S-wave velocity structures in the western coastal plain of Taiwan. Terrest Atmos Ocean Sci (TAO) 20: 299–308. doi: 10.3319/TAO.2007.12.10.01(T) CrossRefGoogle Scholar
  39. Lin PS, Chiou B, Abrahamson N, Walling M, Lee CT, Cheng CT (2011) Repeatable source, site and path effects on the standard deviation for empirical ground-motion prediction models. Bull Seismol Soc Am 101: 2281–2295. doi: 10.1785/0120090312 CrossRefGoogle Scholar
  40. Lin PS, Lee CT (2008) Ground motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bull Seismol Soc Am 98:220–240. doi: 10.1785/0120060002 Google Scholar
  41. Liu KS, Shin TC, Tsai YB (1999) A free-field strong motion network in Taiwan: TSMIP. Terrest Atmos Ocean Sci (TAO) 10: 377–396Google Scholar
  42. Liu KS, Tsai YB (2005) Attenuation relation of peak ground acceleration and velocity for crustal earthquakes in Taiwan. Bull Seismol Soc Am 95: 1045–1058. doi: 10.1785/0120040162 CrossRefGoogle Scholar
  43. Miksat J, Wen KL, Sokolov V, Chen CT, Wenzel F (2010) Simulating the Taipei Basin response by numerical modeling of wave propagation. Bull Earthq Eng 8(4): 847–858. doi: 10.1007/s10518-009-9171-0 CrossRefGoogle Scholar
  44. Molas GL, Anderson R, Seneviratna P, Winkler T. (2006) Uncertainty of portfolio loss estimates for large earthquakes. In: Proceedings of first European conference on earthquake engineering and seismology, Geneva, Switzerland, 3–8 September 2006: Paper 1117Google Scholar
  45. Morikawa N, Kanno T, Narita A, Fujiwara H, Okumura T, Fukushima Y, Guerpinar A (2008) Strong motion uncertainty determined from observed records by dense network in Japan. J Seismol 12: 529–546. doi: 10.1007/s10950-008-9106-2 CrossRefGoogle Scholar
  46. Park J, Bazzurro P, Baker JW (2007) Modeling spatial correlation of ground motion intensity measures for regional seismic hazard and portfolio loss estimations. In: Kanda , Takada , Furuta (eds) Applications of statistics and probability in civil engineering. Taylor & Francis Group, London, pp 1–8Google Scholar
  47. Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2): 461–464. doi: 10.1214/aos/1176344136 CrossRefGoogle Scholar
  48. Sokolov V, Loh CH, Wen KL (2004) Evaluation of generalized site response functions for typical soil classes (B, C and D) in the Taiwan region. Earthq Spectra 20(4): 1279–1316CrossRefGoogle Scholar
  49. Sokolov V, Loh CH, Wen KL (2006) Strong ground motion source scaling and attenuation models for earthquakes located in different source zones in Taiwan. In: Proceedings of the 4th intenational conference on earthquake engineering, Taipei, Taiwan, October 12–13 2006, paper 003Google Scholar
  50. Sokolov V, Loh CH, Jean WY (2007) Application of Horizontal-to-Vertical (H/V) Fourier spectral ratio for analysis of site effect on rock (NEHRP-class B) sites in Taiwan, Soil. Dyn Earthq Eng 27(4): 314–323. doi: 10.1016/j.soildyn.2006.09.001 CrossRefGoogle Scholar
  51. Sokolov V, Wen KL, Miksat J, Wenzel F, Chen CT (2009) Analysis of Taipei basin response for earthquakes of various depths and locations using empirical data. Terrest Atmos Ocean Sci (TAO) 20(5): 687–702. doi: 10.3319/TAO.2008.10.15.01(T) CrossRefGoogle Scholar
  52. Sokolov V, Wenzel F (2011) Influence of spatial correlation of strong ground-motion on uncertainty in earthquake loss estimation. Earthq Eng Struct Dyn 40: 993–1009. doi: 10.1002/eqe.1074 CrossRefGoogle Scholar
  53. Sokolov V, Wenzel F (2011) Influence of ground-motion correlation on probabilistic assessments of seismic hazard and loss: sensitivity analysis. Bull Earthq Eng 9: 1339–1360. doi: 10.1007/s10518-011-9264-4 CrossRefGoogle Scholar
  54. Sokolov V, Wenzel F, Jean WY, Wen KL (2010) Uncertainty and spatial correlation of earthquake ground motion in Taiwan. Terrest Atmos Ocean Sci (TAO) 21: 905–921. doi: 10.3319/TAO.2010.05.03.01(T) CrossRefGoogle Scholar
  55. Strasser FO, Abrahanson NA, Bommer JJ (2009) Sigma: issues, insights, and challenges. Seismol Res Let 80(1): 40–56. doi: 10.1785/gssrl.80.1.40 CrossRefGoogle Scholar
  56. Tsai CCP, Chen YH, Liu CH (2006) The path effect in ground-motion variability: an application of the variance-component technique. Bull Seismol Soc Am 96: 1170–1176. doi: 10.1785/0120050155 CrossRefGoogle Scholar
  57. Wald DJ, Lin KW, Quitoriano V (2008) Quantifying and qualifying USGS ShakeMap uncertainty. USGS Open-File Report 2008-1238Google Scholar
  58. Wang CY, Lee YH, Ger ML, Chen YL (2004) Investigating subsurface structures and P- and S-wave velocities in the Taipei Basin. Terr Atmos Ocean Sci 15(4): 609–627Google Scholar
  59. Wang JH (1998) Q values of Taiwan: a review. J Geol Soc China 36: 15–24Google Scholar
  60. Wang JH (2008) Urban seismology in the Taipei metropolitan area: review and prospective. Terrest Atmos Ocean Sci (TAO) 19: 213–234. doi: 10.3319/TAO.2008.19.3.213(T) CrossRefGoogle Scholar
  61. Wang M, Takada T (2005) Macrospatial correlation model of seismic ground motions. Earthq Spectra 21(4): 1137–1156. doi: 10.1193/1.2083887 CrossRefGoogle Scholar
  62. Wesson RL, Perkins DM (2001) Spatial correlation of probabilistic earthquake ground motion and loss. Bull Seismol Soc Am 91: 1498–1515. doi: 10.1785/0120000284 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Vladimir Sokolov
    • 1
    Email author
  • Friedemann Wenzel
    • 1
  • Kuo-Liang Wen
    • 2
    • 3
  • Wen-Yu Jean
    • 2
  1. 1.Geophysical InstituteKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.National Center for Research on Earthquake EngineeringTaipeiTaiwan, ROC
  3. 3.Institute of GeophysicsNational Central UniversityJhongliTaiwan, ROC

Personalised recommendations