Bulletin of Earthquake Engineering

, Volume 8, Issue 3, pp 535–570 | Cite as

On the repeatability and consistency of three-component ambient vibration array measurements

  • Brigitte Endrun
  • Matthias Ohrnberger
  • Alexandros Savvaidis
Original Research Paper

Abstract

Ambient vibration measurements with small, temporary arrays that produce estimates of surface wave dispersion have become increasingly popular as a low-cost, non-invasive tool for site characterisation. An important requirement for these measurements to be meaningful, however, is the temporal consistency and repeatability of the resulting dispersion and spatial autocorrelation curve estimates. Data acquired within several European research projects (NERIES task JRA4, SESAME, and other multinational experiments) offer the chance to investigate the variability of the derived data products. The dataset analysed here consists of repeated array measurements, with several years of time elapsed between them. The measurements were conducted by different groups in different seasons, using different instrumentations and array layouts, at six sites in Greece and Italy. Ambient vibration amplitude spectra and locations of dominant sources vary between the two measurements at each location. Still, analysis indicates that this does not influence the derived dispersion information, which is stable in time and neither influenced by the instrumentation nor the analyst. The frequency range over which the dispersion curves and spatial autocorrelation curves can be reliably estimated depends on the array dimensions (minimum and maximum aperture) used in the specific deployment, though, and may accordingly vary between the repeated experiments. The relative contribution of Rayleigh and Love waves to the wavefield can likewise change between repeated measurements. The observed relative contribution of Rayleigh waves is generally at or below 50%, with especially low values for the rural sites. Besides, the visibility of higher modes depends on the noise wavefield conditions. The similarity of the dispersion and autocorrelation curves measured at each site indicates that the curves are stable, mainly determined by the sub-surface structure, and can thus be used to derive velocity information with depth. Differences between velocity models for the same site derived from independently determined dispersion and autocorrelation curves—as observed in other studies—are consequently not adequately explained by uncertainties in the measurement part.

Keywords

Ambient vibrations Surface waves Dispersion curves Spatial autocorrelation curves Noise wavefield Site characterisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst Tokyo Univ 25: 415–457Google Scholar
  2. Anastasiadis A, Raptakis D, Pitilakis K (2001) Thessaloniki’s detailed microzoning: subsurface structure as basis for site response analysis. Pure Appl Geophys 158: 2597–2633CrossRefGoogle Scholar
  3. Asten MW (2006) On bias and noise in passive seismic data from finite circular array data processed using SPAC methods. Geophysics 71(6): V153–V162. doi:10.1190/1.2345054 CrossRefGoogle Scholar
  4. Asten MW (2009) Site shear velocity profiles interpretation from microtremor array data by direct fitting of SPAC curves. In: Bard P-Y, Chaljub E, Cornou C, Cotton F, Gueguen P (eds) 3rd International symposium on the effects of surface geology on seismic motion, vol. 2. Grenoble, France, 30 August–1 September 2006, Laboratoire Central des Ponts et Chaussées, pp 1069–1080 (in press)Google Scholar
  5. Asten MW, Dhu T, Lam N (2004) Optimised array design for microtremor array studies applied to site classification; comparison of results with SCPT logs. 13th WCEE. Vancouver, B.C., Canada. 1–6 August 2004. Paper No. 2903Google Scholar
  6. Asten MW, Boore DM (2005) Comparison of shear-velocity profiles of unconsolidated sediments near the Coyote borehole (CCOC) measured with fourteen invasive and non-invasive methods. In: Asten MW, Boore DM (eds) Blind comparison of shear-wave velocities at closely spaced sites in San Jose, California. USGS Open-File Report 2005-1169. Available at http://pubs.usgs.gov/of/2005/1169. Accessed 25 Aug 2009
  7. Aster RC, McNamara DE, Bromiski PD (2008) Multi-decadal climate-induced variability in microseisms. Seismol Res Lett 79: 194–202CrossRefGoogle Scholar
  8. Athanasopoulos GA, Pelekis PC, Leonidou EA (1999) Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake. Soil Dyn Earthq Eng 18(2): 135–149CrossRefGoogle Scholar
  9. Beilecke T, Bram K, Buske S, Krawczyk C (2008) Influence of near surface ground conditions on seismic monitoring setups. Geophys Res Abs Vol 10(EGU General Assembly 2008): EGU2008–A09554Google Scholar
  10. Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169: 1239–1260. doi:10.1111/j.1365-246.X.2007.03374.x CrossRefGoogle Scholar
  11. Bonnefoy-Claudet S, Cotton F, Bard P-Y (2006a) The nature of noise wavefield and its applications for site effect studies—a literature review. Earth-Sci Rev 79: 205–227. doi:10.1016/j.earscirev.2006.07.004 CrossRefGoogle Scholar
  12. Bonnefoy-Claudet S, Cornou C, Bard P-Y, Cotton F, Moczo P, Kristek J, Fäh D (2006b) H/V ratio: a tool for site effect evaluation. Results from 1-D noise simulations. Geophys J Int 167: 827–837. doi:10.1111/j.1365-246.X.2006.03154.x CrossRefGoogle Scholar
  13. Bonnefoy-Claudet S, Köhler A, Cornou C, Wathelet M, Bard P-Y (2008) Effects of Love waves on microtremor H/V ratio. Bull Seism Soc Am 98(1): 288–300. doi:10.1785/0120070063 CrossRefGoogle Scholar
  14. Boore DM, Asten MW (2008) Comparision of shear-wave slowness in the Santa Clara Valley, California, using blind interpretation of data from invasive and noninvasive methods. Bull Seism Soc Am 98(4): 1983–2003. doi:10.1785/0120070277 CrossRefGoogle Scholar
  15. Bettig B, Bard P-Y, Scherbaum F, Riepl J, Cotton F, Cornou C, Hatzfeld D (2001) Analysis of dense array noise measurements using the modified spatial auto-correlation method (SPAC): application to the Grenoble area. Boll Geofis Teo Appl 42: 281–304Google Scholar
  16. Burtin A, Bollinger L, Vergne J, Cattin R, Nábělek JL (2008) Spectral analysis of seismic noise induced by rivers: a new tool to monitor spatiotemporal changes in stream hydrodynamics. J Geophys Res 113: B05301. doi:10.1029/2007JB005034 CrossRefGoogle Scholar
  17. Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8): 1408–1418CrossRefGoogle Scholar
  18. Capon J (1972) Long-period signal processing results for LASA, NORSAR, and ALPA. Geophy J Roy astr Soc 31: 279–296Google Scholar
  19. Cara F, Di Giulio G, Rovelli A (2003) A study on seismic noise variations at Colfiorito, Central Italy: implications for the use of H/V spectral ratios. Geophys Res Lett 30(18): 1972. doi:10.1029/2003GL017807 CrossRefGoogle Scholar
  20. Cessaro RK (1994) Sources of primary and secondary microseisms. Bull Seism Soc Am 84(1): 142–148Google Scholar
  21. Chávez-García FJ, Raptakis D, Makra K, Pitilakis K (2000) Site effects at euroseistest—II. Results from 2D numerical modeling and comparison with observations. Soil Dyn Earthq Eng 19: 23–39CrossRefGoogle Scholar
  22. Chávez-García FJ, Rodríguez M, Stephenson WR (2005) An alternative approach to the SPAC analysis of microtremors: exploiting stationarity of noise. Bull Seism Soc Am 95(1): 277–293. doi:10.1785/0120030179 CrossRefGoogle Scholar
  23. Chávez-García FJ, Rodríguez M, Stephenson WR (2006) Subsoil structure using SPAC measurements along a line. Bull Seism Soc Am 96(2): 729–736. doi:10.1785/0120050141 CrossRefGoogle Scholar
  24. Cho I, Tada T, Shinozaki Y (2004) A new method to determine phase velocities of Rayleigh waves from microseisms. Geophysics 69(6): 1535–1551. doi:10.1190/1.1836827 CrossRefGoogle Scholar
  25. Cho I, Tada T, Shinozaki Y (2006a) Centerless circular array method: inferring phase velocities of Rayleigh waves in broad wavelength ranges using microtremor records. J Geophys Res 111: B09315. doi:10.1029/2005JB004235 CrossRefGoogle Scholar
  26. Cho I, Tada T, Shinozaki Y (2006b) A generic formulation for microtremor exploration methods using three-component records from a circular array. Geophys J Int 165: 236–258. doi:10.1111/j.1365-246X.2006.02880.x CrossRefGoogle Scholar
  27. Claprood M, Asten MW (2009) Initial results from SPAC, FK and HVSR microtremor surveys for site hazard study at Launceston, Tasmania. Expl Geophys 40: 132–142. doi:10.1071/EG08106 CrossRefGoogle Scholar
  28. Cornou C, Ohrnberger M, Boore DM, Kudo K, Bard P-Y (2009) Derivation of structural models from ambient vibration array recordings: results from an international blind test. In: Bard P-Y, Chaljub E, Cornou C, Cotton F, Gueguen P (eds) 3rd International symposium on the effects of surface geology on seismic motion, vol. 2. Grenoble, France, 30 August–1 September 2006, Laboratoire Central des Ponts et Chaussées, pp 1127–1219 (in press)Google Scholar
  29. De Angelis S (2008) Broadband seismic noise analysis of the Soufrière Hills volcano network. Seism Res Lett 79(4): 504–509. doi:10.1785/gssrl.79.4.504 CrossRefGoogle Scholar
  30. De Becker M (1990) Continuous monitoring and analysis of microseisms in Belgium to forecast storm surges along the North Sea coast. Phys Earth Planet Int 63: 219–228CrossRefGoogle Scholar
  31. Di Giulio G, Rovelli A, Cara F, Azzara RM, Marra F, Basili R, Caserta A (2003) Long-duration asynchronous ground motions in the Colfiorito plain, central Italy, observed on a two-dimensional dense array. J Geophys Res 118(B10): 2486. doi:10.1029/2002JB002367 CrossRefGoogle Scholar
  32. Di Giulio G, Cornou C, Ohrnberger M, Wathelet M, Rovelli A (2006) Deriving wavefield characteristics and shear-velocity profiles from two-dimensional small-aperture arrays analysis of ambient vibrations in a small-size alluvial basin Colfiorito, Italy. Bull Seism Soc Am 96(5): 1915–1933. doi:10.1785/0120060119 CrossRefGoogle Scholar
  33. Doutsos T, Poulimenos G (1992) Geometry and kinematics of the active faults and their seismotectonic significance in the western Corinth-Patras rift (Greece). J Struct Geol 14(6): 689–699CrossRefGoogle Scholar
  34. Drouet S, Triantafyllidis P, Savvaidis A, Theodulidis N (2008) Comparison of site-effects estimation methods using the Lefkas Greece 2003 earthquake aftershocks. Bull Seism Soc Am 98(5): 2349–2363. doi:10.1785/0120080004 CrossRefGoogle Scholar
  35. Endrun B, Meier T, Lebedev S, Bohnhoff M, Stavrakakis G, Harjes H-P (2008) S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion. Geophys J Int 174: 593–616. doi:10.1111/j1365-246X.2008.03802.x CrossRefGoogle Scholar
  36. Endrun B, Renalier F (2008) Report on in-situ measurements at the 20 selected sites. NERIES-Project JRA4 Task C. EU-FP6 EC project number 026130. Deliverable D2. Available via http://www.neries-eu.org/main.php/JRA4_D2_main_appendix1_appendix2.pdf?fileitem=12438634. Accessed 8 May 2009
  37. Fäh D, Stamm G, Havenith H-B (2008) Analysis of three-component ambient vibration array measurements. Geophys J Int 172: 199–213. doi:10.1111/j.1365-246.X.2007.03625.x CrossRefGoogle Scholar
  38. Forbriger T (2009) About the nonunique sensitivity of pendulum seismometers to translational, angular, and centripetal acceleration. Bull Seism Soc Am 99(2B): 1343–1351. doi:10.1785/0120080150 CrossRefGoogle Scholar
  39. Frank SD, Foster AE, Ferris AN, Johnson M (2009) Frequency-dependent asymmetry of seismic cross- correlation functions associated with noise directionality. Bull Seism Soc Am 99(1): 462–470. doi:10.1785/0120080023 CrossRefGoogle Scholar
  40. Fyen J (1990) Diurnal and seasonal variations in the microseismic noise level observed at the NORESS array. Phys Earth Planet Int 63: 252–268CrossRefGoogle Scholar
  41. García-Jerez A, Luzón F, Navarro M (2008) An alternative method for calculation of Rayleigh and love wave phase velocities by using three-component records on a single circular array without a central station. Geophys J Int 173: 844–858. doi:10.1111/j.1365-246.X.2008.03756.x CrossRefGoogle Scholar
  42. Gorbatikov AV, Kalnina AV, Volkov VA, Arnoso J, Vieira R, Velez E (2004) Results of analysis of the data of microseismic survey at Lanzarote Island Canary Spain. Pure Appl Geophys 161: 1561–1578. doi:10.1007/s00024-004-2521-6 CrossRefGoogle Scholar
  43. Gouédard P, Cornou C, Roux P (2008) Phase-velocity dispersion curves and small-scale geophysics using noise correlation slantstack technique. Geophys J Int 172: 971–981. doi:10.1111/j.1365-246.X.2007.03654.x CrossRefGoogle Scholar
  44. Grevemeyer I, Herber R, Essen H-H (2000) Microseismological evidence for changing wave climate in the northeast Atlantic Ocean. Nature 408: 349–352CrossRefGoogle Scholar
  45. Guillier B, Chetelain J-L, Bonnefoy-Claudet S, Haghshenas E (2007) Use of ambient noise: from spectral amplitude variability to H/V stability. J Earthq Eng 11: 925–942. doi:10.1080/13632460701457249 Google Scholar
  46. Guillier B, Atakan K, Chatelain J-L, Havskov J, Ohrnberger M, Cara F, Duval A-M, Zacharopoulos S, Teves-Costa P, the SESAME Team (2008) Influence of instruments on the H/V spectral ratios of ambient vibrations. Bull Earthq Eng 6: 3–32. doi:10.1007/s10518-007-9039-0 CrossRefGoogle Scholar
  47. Gurrola H, Minster JB, Given H, Vernon F, Berger J, Aster R (1990) Analysis of high-frequency seismic noise in the western United States and eastern Kazakhstan. Bull Seism Soc Am 80(4): 951–970Google Scholar
  48. Hanssen P, Bussat S (2008) Pitfalls in the analysis of low frequency passive seismic data. First Break 26: 111–119Google Scholar
  49. Haubrich RA, Munk WH, Snodgrass FE (1963) Comparative spectra of microseisms and swell. Bull Seism Soc Am 53(1): 27–37Google Scholar
  50. Jongmans D, Pitilakis K, Demanet D, Raptakis D, Riepl J, Horrent C, Tsokas G, Lontzetidis K, Bard P-Y (1998) EURO-SEISTEST: determination of the geological structure of the Volvi basin and validation of the basin response. Bull Seism Soc Am 88(2): 473–487Google Scholar
  51. Kassaras I, Voulgaris N, Makropoulos K (2008) Determination of site response in Lefkada town (W. Greece) by ambient vibration measurements. 31st Assembly ESC. Hersonissos, Crete, Greece. 7-12 September 2008. 198-205. Available at http://www.geophysics.geol.uow.gr/papers/ESC2008/kassaras1_ESC2008_short-paper.pdf. Accessed 28 Aug 2009
  52. King GDP, Ouyang ZX, Papadimitriou P, Deschamps A, Gagnepain J, Houseman G, Jackson JA, Coufleris C, Virieux J (1985) The evolution of the Gulf of Corinth (Greece): an aftershock study of the 1981 earthquake. Geophys J Roy astr Soc 80: 677–693Google Scholar
  53. Köhler A, Ohrnberger M, Scherbaum F, Wathelet M, Cornou C (2007) Assessing the reliability of the modified three-component spatial autocorrelation technique. Geophys J Int 168: 779–796. doi:10.1111/j.1365-246X.2006.03253.x CrossRefGoogle Scholar
  54. Kværna T (1990) Sources of short-term fluctuations in the seismic noise level at NORESS. Phys Earth Planet Int 63: 269–276CrossRefGoogle Scholar
  55. Lacoss RT, Kelly EJ, Toksöz MN (1969) Estimation of seismic noise structure using arrays. Geophysics 34: 21–38CrossRefGoogle Scholar
  56. Martinod J, Hatzfeld D, Savvaidis P, Katsambalos K (1997) Rapid N-S extension in the Mygdonian graben (Northern Greece) deduced from repeated geodetic surveys. Geophys Res Lett 24(24): 3293–3296CrossRefGoogle Scholar
  57. McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seism Soc Am 94(4): 1517–1527CrossRefGoogle Scholar
  58. Morikawa H, Udagawa S (2009) A method to estimate the phase velocities of microtremors using a time- frequency analysis and its applications. Bull Seism Soc Am 99(2A): 774–793. doi:10.1785/0120080100 CrossRefGoogle Scholar
  59. Mucciarelli M, Gallipolli MR, Arcieri M (2003) The stability of the horizontal-to-vertical spectral ratio of triggered noise and earthquake recordings. Bull Seism Soc Am 93(3): 1407–1412CrossRefGoogle Scholar
  60. Mucciarelli M, Gallipolli MR, Di Giacomo D, Di Nota F, Nino E (2005) The influence of wind on measurements of seismic noise. Geophys J Int 161: 303–308. doi:10.1111/j.1365-246.X.2004.02561.x CrossRefGoogle Scholar
  61. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rept Railway Tech Res Inst 30(1): 25–33Google Scholar
  62. Nishimura T, Uchida N, Sato H, Masakazu O, Tanaka S, Hamaguchi H (2000) Temporal changes of the crustal structure associated with the M6.1 earthquake on September 3 1998 and the volcanic activity of Mount Iwate Japan. Geophys Res Lett 27(2): 269–272CrossRefGoogle Scholar
  63. Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res 109: B11406. doi:10.1029/2003JB002830 CrossRefGoogle Scholar
  64. Ohori M, Nobata A, Wakamatsu K. (2002) A comparison of ESAC and FK methods for estimating phase velocity using arbitrarily shaped microtremor arrays. Bull Seism Soc Am 92(6): 2323–2332CrossRefGoogle Scholar
  65. Ohrnberger M, Vollmer D, Scherbaum F (2006) WARAN—a mobile wireless array analysis system for in-field ambient vibration dispersion curve estimation. 1st ECEES. Geneva, Switzerland. 3–8 September 2006, p 284Google Scholar
  66. Okada H (2003) The microtremor survey method. Geophysical Monograph Series 12, Society of Exploration GeophysicistsGoogle Scholar
  67. Oliver J, Page R (1963) Concurrent storms of long and ultralong period microseisms. Bull Seism Soc Am 53(1): 15–26Google Scholar
  68. Panou AA, Theodulidis NP, Hatzidimitriou PM, Savvaidis AS, Papazachos CB (2005) Reliability of ambient noise horizontal-to-vertical spectral ratio in urban environments: the case of Thessaloniki City (Northern Greece). Pure Appl Geophys 162: 891–912. doi:10.1007/s00024-004-2647-6 CrossRefGoogle Scholar
  69. Parolai S, Richwalski SM, Milkereit C, Bormann P (2004) Assessment of the stability of H/V spectral ratios from ambient noise and comparison with earthquake data in the Cologne area (Germany). Tectonophysics 390: 57–73. doi:10.1016/j.tecto.2004.03.024 CrossRefGoogle Scholar
  70. Parolai S, Picozzi M, Richwalski SM, Milkereit C (2005) Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophys Res Lett 32: L01303. doi:10.1029/2004GL021115 CrossRefGoogle Scholar
  71. Peng Z, Ben-Zion Y (2006) Temporal changes of shallow seismic velocities around the Karadere-Düzce branch of the North Anatolian Fault and strong ground motion. Pure Appl Geophy 163: 567–600. doi:10.1007/s00024-005-0034-6 CrossRefGoogle Scholar
  72. Pham VN, Bernard P, Boyer D, Chouliaras G, Le Mouël JL, Stavrakakis GN (2000) Electrical conductivity and crustal structure beneath the central Hellenides around the Gulf of Corinth (Greece) and their relationship with seismotectonics. Geophys J Int 142: 948–969CrossRefGoogle Scholar
  73. Picozzi M, Parolai S, Richwalski SM (2005) Joint inversion of H/V ratios and dispersion curves from seismic noise: estimating the S-wave velocity of bedrock. Geophys Res Lett 32: L11308. doi:10.1029/2005GL022878 CrossRefGoogle Scholar
  74. Picozzi M, Sabetta F, Theodulidis N, Zacharopoulos S, Savvaidis A, Bard P-Y, Cornou C, Gueguen P, Fäh D, Kalogeras I, Akkar S, Rinaldis D, Tanircan G (2007) Selected sites and available information. NERIES-Project JRA4 Task C. EU-FP6 EC project number 026130. Deliverable D1. Available via http://www.neries-eu.org/main.php/JRA4_D1_TASK%20A.pdf?fileitem=13025315. Accessed 25 Sep 2009
  75. Pitilakis K, Raptakis D, Lontzetidis K, Tika-Vassilikou Th, Hatzfeld D (1999) Geotechnical and geophysical description of EURO-SEISTEST using field laboratory tests and moderate strong motion recordings. J Earthq Eng 3(3): 381–409CrossRefGoogle Scholar
  76. Raptakis D, Theodulidis N, Pitilakis K (1999) Data analysis of the Euroseistest strong motion array in Volvi (Greece): standard and horizontal-to-vertical spectral ratio techniques. Eq Spectra 14(1): 203–224CrossRefGoogle Scholar
  77. Raptakis D, Chavez-Garcia FJ, Makra K, Pitilakis K (2000) Site effects at Euroseistest—I. Determination of the valley structure and confrontation of observations with analysis. Soil Dyn Earthq Eng 19: 1–22CrossRefGoogle Scholar
  78. Raptakis D, . Manakou MV, Chavez-Garcia FJ, Makra K, Pitilakis K (2005) 3D configuration of Mygdonian basin and preliminary estimate of its site response. Soil Dyn Earthq Eng 25: 871–887. doi:10.1016/j.soildyn.2005.05.005 CrossRefGoogle Scholar
  79. Rigo A, Bethoux N, Masson F, Ritz J-F (2008) Seismicity rate and wave-velocity variations as consequences of rainfall: the case of the catastrophic storm of September 2002 in the Nîmes Fault region (Gard France). Geophys J Int 173: 473–482. doi:10.1111/j.1365-246.X.2008.03718.x CrossRefGoogle Scholar
  80. Roberts J, Asten M (2005) Estimating the shear velocity profile of quarternary silts using microtremor array (SPAC) measurements. Expl Geoph 36: 34–40. doi:10.1017/EG05034 CrossRefGoogle Scholar
  81. Roberts J, Asten M (2007) Further investigation over quarternary silt using the spatial autocorrelation (SPAC) and horizontal to vertical spectral ratio (HVSR) microtremor methods. Expl Geoph 38: 175–183. doi:10.1071/EG07017 CrossRefGoogle Scholar
  82. Roberts J, Asten M (2008) A study of near source effects in array-based (SPAC) microtremor surveys. Geophys J Int 174: 159–177. doi:10.1111/j.1365-246.X.2008.03729.x CrossRefGoogle Scholar
  83. Savvaidis AS, Pedersen LB, Tsokas GN, Dawes GJ (2000) Structure of the Mygdonia basin (NGreece) inferred from MT and gravity data. Tectonophysics 317: 171–186CrossRefGoogle Scholar
  84. Savvaidis A, Cadet H, Gueguen P, Panou A, Campillo M, Theodulidis N, Kalogeras I (2006) Accelerograph stations site characterization using ambient noise: selected stations in Greece. In: Third international symposium on the effects of surface geology on seismic motion. Grenoble, France. 30 August–1 September 2006, Paper Number 064Google Scholar
  85. Schevenels M, Lombaert G, Degrande G, François S. (2008) A probability assessment of resolution in the SASW test and its impact on the prediction of ground vibrations. Geophys J Int 172: 262–275. doi:10.1111/j.1365-246X.2007.0326.x CrossRefGoogle Scholar
  86. Sens-Schönfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano Indonesia. Geophys Res Lett 33: L21302. doi:10.1029/2006GL027797 CrossRefGoogle Scholar
  87. SESAME (2002a) Report on the array data sets for different sites. WP05—instrumental layout for array measurements. SESAME-Project EVG1-CT-2000-00026. Deliverable D06.05. Available via http://sesame-fp5.obs.ujf-grenoble.fr/Deliverables/D06-05_Texte.pdf. Accessed 8 May 2009
  88. SESAME (2002b) Final report of the instrument workshop 22–26 October 2001 University of Bergen Norway. WP02—controlled instrumental specifications. SESAME-Project EVG1-CT-2000-00026. Deliverable D01.02. Available via http://sesame-fp5.obs.ujf-grenoble.fr/Deliverables/D01-02_Texte.pdf. Accessed 8 May 2009
  89. SESAME (2005) Report on FK/SPAC capabilities and limitations. WP06—derivation of dispersion curves. SESAME-Project EVG1-CT-2000-00026. Deliverable D19.06. Available via http://sesame-fp5.obs.ujf-grenoble.fr/Deliverables/Del-D19-Wp06.pdf. Accessed 8 May 2009
  90. Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long-range correlation properties. J Geophys Res 111: B10306. doi:10.1029/2005JB004237 CrossRefGoogle Scholar
  91. Tada T, Cho I, Shinozaki Y (2006) A two-radius circular array method: inferring phase velocities of Love waves using microtremor records. Geophys Res Lett 33: L10303. doi:10.1029/2006GL025722 CrossRefGoogle Scholar
  92. Tada T, Cho I, Shinozaki Y (2007) Beyond the SPAC method: exploiting the wealth of circular-array methods for microtremor exploration. Bull Seism Soc Am 97(6): 2080–2095. doi:10.1785/0120070058 CrossRefGoogle Scholar
  93. Tanimoto T, Alvizuri C (2006) Inversion of the HZ ratio of microseisms for S-wave velocity in the crust. Geophys J Int 165: 323–335. doi:10.1111/j.1365-246.X.2006.02905.x CrossRefGoogle Scholar
  94. Tanimoto T, Ishimaru S, Alvizuri C (2006) Seasonality in particle motions of microseisms. Geophys J Int 166: 253–266. doi:10.1111/j.1365-246.X.2006.02931.x CrossRefGoogle Scholar
  95. Tiberi C, Lyon-Caen H, Hatzfeld D, Achauer U, Karagianni E, Kiratzi A, LouvariE. Panagiotopoulos D, Kassaras I, Kaviris G, Makropoulos K, Papadimitriou P (2000) Crustal and upper mantle structure beneath the Corinth rift (Greece) from a teleseismic tomography study. J Geophys Res 105(B12): 28159–28171CrossRefGoogle Scholar
  96. Triantafyllidis P, Hatzidimitriou PM, Suhadolc P (2001) 1-D theoretical modeling for site effect estimations in Thessaloniki: comparison with observations. Pure Appl Geophys 158: 2333–2347CrossRefGoogle Scholar
  97. Triantafyllidis P, Theodulidis N, Savvaidis A, Papaioannou C, Dimitriu P (2006) Site effects estimation using earthquake and ambient noise data: the case of Lefkas town (W. Greece). 1st ECEES. Geneva, Switzerland. 3–8 September 2006, p 19Google Scholar
  98. Vassalo M, Bobbio A, Iannaccone G (2008) A comparison of sea-floor and on-land seismic ambient noise in the Campi Flegrei Caldera Southern Italy. Bull Seism Soc Am 98(6): 2962–2974. doi:10.1785/0120070152 CrossRefGoogle Scholar
  99. Wang B, Zhu P, Chen Y, Niu F, Wang B (2008) Continuous subsurface velocity measurements with coda wave interferometry. J Geophys Res 113: B12313. doi:10.1029/2007JB005023 CrossRefGoogle Scholar
  100. Wathelet M, Jongmans D, Ohrnberger M (2004) Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf Geophys 2: 211–221Google Scholar
  101. Wathelet M, Jongmans D, Ohrnberger M (2005) Direct inversion of spatial autocorrelation curves with the neighbourhood algorithm. Bull Seism Soc Am 95(5): 1787–1800. doi:10.1785/0120040220 CrossRefGoogle Scholar
  102. Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performance for ambient vibrations on a shallow structure and consequences over vs inversion. J Seism 12: 1–19. doi:10.1007/s10950-007-9067-x CrossRefGoogle Scholar
  103. Wegler U, Lühr B-G, Snieder R, Ratdomopurbo A (2006) Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia). Geophys Res Lett 33: L09303. doi:10.1029/2006GL025928 CrossRefGoogle Scholar
  104. Wilcock WSD, Webb SC, Bjarnason IT (1999) The effect of local wind on seismic noise near 1 Hz at the MELT site and in Iceland. Bull Seism Soc Am 89(6): 1543–1557Google Scholar
  105. Withers MM, Aster RC, Young CJ, Chael EP (1996) High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull Seism Soc Am 86(5): 1507–1515Google Scholar
  106. Yamanaka H, Dravinski M, Kagami H (1993) Continuous measurements of microtremors on sediments and basement in Los Angeles California. Bull Seism Soc Am 83(5): 1595–1609Google Scholar
  107. Yang J, Sato T (2000) Interpretation of seismic vertical amplification observed at an array site. Bull Seism Soc Am 90(2): 275–285CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Brigitte Endrun
    • 1
  • Matthias Ohrnberger
    • 1
  • Alexandros Savvaidis
    • 2
  1. 1.Institute of Geosciences, Potsdam UniversityPotsdamGermany
  2. 2.Institute of Earthquake Seismology and Earthquake EngineeringThessalonikiGreece

Personalised recommendations