Advertisement

Bulletin of Earthquake Engineering

, Volume 8, Issue 2, pp 201–229 | Cite as

Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method

  • N. LantadaEmail author
  • J. Irizarry
  • A. H. Barbat
  • X. Goula
  • A. Roca
  • T. Susagna
  • L. G. Pujades
Original Research Paper

Abstract

The vulnerability index method, in its version developed in the framework of the European project Risk-UE, has been adapted and applied in this article, to evaluate the seismic risk for the city of Barcelona (Spain) through a GIS based tool. According to this method, which defines five damage states, the action is expressed in terms of the macroseismic intensity and the seismic quality of the buildings by means of a vulnerability index. The probabilities of damage states are obtained considering a binomial or beta-equivalent probability distribution. The most relevant seismic risk evaluation results obtained, for current buildings and monuments of Barcelona, are given in the article as scenarios of expected losses.

Keywords

Seismic hazard Seismic vulnerability Risk scenarios Loss estimation Urban areas GIS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnos T, Rojahn C, Kiremidjian A (1995) NCEER-ATC joint study on fragility of buildings, Report NCEER-95-0003. National Center for Earthquake Engineering Research, BuffaloGoogle Scholar
  2. ATC-13 (1985) Earthquake damage evaluation data for California, ATC-13. Applied Technology Council, Redwook CityGoogle Scholar
  3. Barbat AH, Moya FY, Canas JA (1996) Damage scenarios simulation for seismic risk assessment in urban zones. Earthq Spectra 12(3): 371–394CrossRefGoogle Scholar
  4. Barbat AH, Mena U, Yepez F (1998) Evaluación probabilista del riesgo sísmico en zonas urbanas. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 14: 247–268Google Scholar
  5. Barbat AH, Pujades LG, Lantada N (2006) Performance of buildings under earthquake in Barcelona, Spain. Comput Aided Civ Infrastruct Eng 21: 573–593CrossRefGoogle Scholar
  6. Barbat AH, Lagomarsino S, Pujades LG (2006b) Vulnerability assessment of dwelling buildings. In: Sousa C, Roca A, Goula X (eds) Assessing an managing earthquake risk. Springer, Dordrecht, pp 115–134Google Scholar
  7. Barbat AH, Pujades LG, Lantada N (2008) Seismic damage evaluation in urban areas using the capacity spectrum method: application to Barcelona. Soil Dyn Earthq Eng 28(10–11): 851–865 (special issue Urban earthquake hazard and damage assessment)CrossRefGoogle Scholar
  8. Barbat AH, Carreño ML, Pujades LG, Lantada N, Cardona OD, Marulanda MC (2009) Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng. doi: 10.1080/15732470802663763
  9. Bard PY (1997) Local effects on strong motion ground motion: basic physical phenomena and estimation methods for microzoning studies, In: SERINA: seismic risk and integrated seismological, geotechnical and structural approaches. ITSAK, European Commission, Directorate General for Science and DevelopmentGoogle Scholar
  10. Benedetti D, Petrini V (1984) Sulla vulnerabilitá sismica di edifici in muratura: proposte di un metodo di valutazione. L’industria delle Construzioni 149: 66–78Google Scholar
  11. Bernardini A (2000) The vulnerability of buildings—evaluation on a national scale of the seismic vulnerability of ordinary building. CNR-GNDT, RomeGoogle Scholar
  12. Boletín Económico de la Construcción (2007) Revista trimestral de precios del ramo de la construcción. Año LXVIII, trimestre 4. No. 272Google Scholar
  13. Carreño ML, Cardona OD, Barbat AH (2007) Urban seismic risk evaluation: a holistic approach. Nat Hazards 40: 137–142CrossRefGoogle Scholar
  14. Carreño ML, Cardona OD, Barbat AH (2007) Disaster risk management performance index. Nat Hazards 41: 1–20CrossRefGoogle Scholar
  15. Castellò D, Mañà F (2003) Study of the seismic vulnerability of the city of Barcelona within the framework of the Risk-UE European project. RISK-UE project: an advanced approach to earthquake risk scenarios with applications to different European towns. Contract No.EVK4-CT-2000-00014, BarcelonaGoogle Scholar
  16. Cid J, Susagna T, Goula X, Chavarria L, Figueras S, Fleta J, Casas A, Roca A (2001) Seismic zonation of Barcelona based on numerical simulation of site effects. Pure Appl Geophys 158: 1–19CrossRefGoogle Scholar
  17. Coburn A, Spence R (2002) Earthquake protection, 2nd edn. Wiley, ChichesterGoogle Scholar
  18. Cornell CA (1968) Engineering seismic hazard analysis. Bull Seismol Soc Am 59(5): 1583–1606Google Scholar
  19. Departament d’Estadistica (2007) La població de Barcelona, 2006. Ajuntament de Barcelona, Barcelona (in catalan)Google Scholar
  20. Egozcue JJ, Barbat A, Canas JA, Miquel J, Banda E (1991) A method to estimate intensity occurrence probabilities in low seismic activity regions. Earthq Eng Struct Dyn 20: 43–60CrossRefGoogle Scholar
  21. Faccioli E (2006) Seismic hazard assessment for derivation of earthquake scenarios in Risk-UE. Bull Earthq Eng 4: 341–364CrossRefGoogle Scholar
  22. FEMA/NIBS (2002) Earthquake loss estimation methodology, HAZUS-99 service release 2 (SR2) technical 533 manual. National Institute of Building Sciences for the Federal Emergency Management Agency, 534, Washington, DCGoogle Scholar
  23. Fleta J, Escuer J, Goula X, Olivera C, Combes Ph, Grellet B, Granier Th (1996) Zonación tectónica, primer estadio de la zonación sismotectónica del NE de la Península Ibérica (Cataluña). Geogaceta 20: 853–856Google Scholar
  24. Giovinazzi S, Lagomarsino S (2002) Wp04: guidelines for the implementation of the level I methodology for the vulnerability assessment of current buildings. RISK-UE project: an advanced approach to earthquake risk scenarios with applications to different European towns. Contract No.EVK4-CT-2000-00014, GenoaGoogle Scholar
  25. GNDT: Gruppo Nazionale per la Difesa dai Terremoti (1994) Scheda di esposizione e vulnerabilità e di rilevamento danni di primo livello e secondo livello (muratura e cemento armato), RomaGoogle Scholar
  26. Goula X, Godefroy P (1985) Évaluation de l’alea simique regional. Zonage à petite échelle. Génie Parasismique, pp 207–221Google Scholar
  27. Grellet B, Combes Ph, Garnier Th, Phillip H (1993) Sismotectonique de la France Métropolitane. Mémories de la Sociéte Géologique de France, No 164, vol I, 76 ppGoogle Scholar
  28. Grünthal G (1998) European macroseismic scale 1998. Centre Européen de Géodynamique et de Séismologie, LuxemburgGoogle Scholar
  29. Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena. Princeton University Pres, New JerseyGoogle Scholar
  30. HAZUS (1999) Earthquake loss estimation methodology technical manual, prepared by the National Institute of Building Sciences for Federal Emergency Management Agency (FEMA), Washington, DCGoogle Scholar
  31. INFOCCA (2002) Informació del Centre de Cartografia Automàtica (INFOCCA). Institut Municipal d’Informática, Ajuntament de Barcelona (in catalan)Google Scholar
  32. Irizarry J (2004) An advanced approach to seismic risk assessment. Application to the cultural heritage and the urban system of Barcelona. Ph.D. Thesis, Universitat Politècnica de Catalunya, BarcelonaGoogle Scholar
  33. Irizarry J, Goula X, Susagna T, Roca A, Mañ á F (2004) Earthquake risk scenarios for monuments in Barcelona, Spain. In: Proceedings of the 13th world conference on earthquake engineering, VancouverGoogle Scholar
  34. Kappos A, Pitilakis K, Stylianidis K, Morfidis K (1995) Cost-benefit analysis for the seismic rehabilitation of buildings in Thessaloniki, based on a hybrid method of vulnerability assessment. In: Proceedings of the 5th international conference on seismic zonation, Nice,vol 1, pp 406–413Google Scholar
  35. Kallberg KT, Cornell CA (1969) Seismic risk in Southern California. Research Report MIT, Department of Civil engineering, BostonGoogle Scholar
  36. Lagomarsino S (2006) On the vulnerability assessment of monumental buildings. Bull Earthq Eng 4: 445–463CrossRefGoogle Scholar
  37. Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4: 415–443CrossRefGoogle Scholar
  38. Lagomarsino S, Giovinazzi S, Podestà S, Resemini S (2003) Wp5: vulnerability of historical and monumental buildings handbook. RISK-UE: an advanced approach to earthquake risk scenarios with applications to different European towns. Contract No. EVK4-CT-2000-00014Google Scholar
  39. Lagomarsino S, Podestà S, Resemini S (2004) Observational and mechanical models for the vulnerability assessment of monumental buildings. In: Proceedings of the 13th world conference earthquake engineering, VancouverGoogle Scholar
  40. Lantada N (2007) Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona. Doctoral Thesis. Technical University of Catalonia, Barcelona Available via DIALOG. http://www.tdx.cat/TDX-0401109-133809. Accessed 30 Jan 2009
  41. Lantada N, Pujades LG, Barbat AH (2008) Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Nat Hazards. doi: 10.1007/s11069-007-9212-4
  42. Lungu D, Aldea A, Arion A, Vacareanu R, Petrescu F, Cornea T (2001) WP1 report: European distinctive features, inventory database and typology. RISK-UE project: an advanced approach to earthquake risk scenarios with applications to different European towns. Contract No. EVK4-CT-2000-00014Google Scholar
  43. Martí JO (2000) Anàlisi de risc sísmic en la ciutat de Barcelona. Aspectes relacionats amb l’evolució espai—temporal del risc, Universitat Politècnica de Catalunya (in catalan)Google Scholar
  44. Milutinoviç ZV, Trendafiloski GS (2003) WP04: vulnerability of current buildings handbook. RISK-UE project: an advanced approach to earthquake risk scenarios with applications to different European towns. Contract No. EVK4-CT-2000-00014, Institute of Earthquake Engineering and Engineering Seismology (IZIIS), SkopjeGoogle Scholar
  45. McGuire R (1976) EQRISK: evaluation of earthquake risk to site. Fortran computer program for seismic risk analysis. US Geological Survey Open File Report 76–67Google Scholar
  46. Mouroux P, Bertrand M, Bour M, Brun BL, Depinois S, Masure P, Risk-UE Team (2004) The European Risk-UE project: an advanced approach to earthquake risk scenarios. In: Proceedings of the 13th world conference earthquake engineering, Vancouver (CD-ROM, Paper No. 3329)Google Scholar
  47. MSK-81 (1981) Seismic intensity scale in report on the ad-hoc panel meeting of experts on up-dating of the MSK-64 seismic intensity scale. Jena, 1981. Gerlands Beitr Geophys, LeipzigGoogle Scholar
  48. NCSE-02 (2002) Normativa de Construcción Sismorresistente Española, Comisión Permanente de Normas Sismorresistentes, Real Decreto 997/2002. Boletín Oficial del Estado No. 244 del 11 de octubre de 2002Google Scholar
  49. NCSE-94 (1994) Norma de Construcción Sismorresistente Española, Parte General y de Edificación, Comisión Permanente de Normas Sismorresistentes, Real Decreto 2543/1994, Boletín Oficial del Estado No 33 del 29 de Diciembre de 1994: 3936–3980Google Scholar
  50. Olivera C, Riera A, Lambert J, Banda E, Alexandre P (1994) Els terratrèmols de l’any 1373 al Pirineu: efectes a Espanya i França. Servei Geològic de Catalunya. Generalitat de Catalunya, Monografies, No. 3Google Scholar
  51. Paricio A (2001) Secrets d’un sistema constructiu: l’Eixample. Edicions UPC, BarcelonaGoogle Scholar
  52. Perkins JB, Harrald J, Jeong D, Chuaqui B (1996) Shaken awake estimates of uninhabitable dwelling units and peak shelter populations in future earthquakes affecting the San Francisco Bay region. Association of Bay Area Governments, OaklandGoogle Scholar
  53. PGS-1 (1968) Norma sismorresistente PGS-1(1968), parte A, Comisión Interministerial de la Presidencia del Gobierno, Decreto 106/1968, del 16 de enero de 1969Google Scholar
  54. Secanell R (1999) Avaluació de la perillositat sísmica a Catalunya: anàlisi de sensibilitat per a diferents models d′ocurrència i paràmetres sísmics, Ph.D. Thesis, University of BarcelonaGoogle Scholar
  55. Secanell R, Goula X, Susagna T, Fleta J, Roca A (2004) Seismic hazard zonation of Catalonia, Spain, integrating uncertainties. J Seismol 8: 24–40CrossRefGoogle Scholar
  56. Singhal A, Kiremidjian AS (1996) Method for probabilistic evaluation of seismic structural damage. J Struct Eng ASCE 122(12): 1459–1467CrossRefGoogle Scholar
  57. Sponheuer W (1960) Methoden zur Herdtirefenbestimmung in der Makroseismic. Freiberger Forschungshefte, C88Google Scholar
  58. Susagna T, Goula X (1998) Atlas Sísmic de Catalunya, vol 1. Institut Cartogràfic de CatalunyaGoogle Scholar
  59. Udwin D (1981) Introductory spatial analysis. Ed. Methuen, LondonGoogle Scholar
  60. Vacareanu R, Lungu, D, Aldea A, Arion C (2004) WP07: report seismic risk scenarios handbook. Risk-UE Project, BucarestGoogle Scholar
  61. Whitman RW (1973) Damage probability matrices for prototype buildings. Massachusetts Institute of Technology, Department of Civil Engineering Research, Report R73-57, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • N. Lantada
    • 1
    Email author
  • J. Irizarry
    • 2
  • A. H. Barbat
    • 3
  • X. Goula
    • 2
  • A. Roca
    • 2
  • T. Susagna
    • 2
  • L. G. Pujades
    • 1
  1. 1.Department of Geotechnical Engineering and Geosciences, Civil Engineering SchoolTechnical University of CataloniaBarcelonaSpain
  2. 2.Institut Geològic de CatalunyaBarcelonaSpain
  3. 3.Department of Structural Mechanics, Civil Engineering SchoolTechnical University of CataloniaBarcelonaSpain

Personalised recommendations