Bulletin of Earthquake Engineering

, Volume 5, Issue 3, pp 347–362 | Cite as

Site effects of the 2002 Molise earthquake, Italy: analysis of strong motion, ambient noise, and synthetic data from 2D modelling in San Giuliano di Puglia

  • A. Strollo
  • S. M. Richwalski
  • S. Parolai
  • M. R. Gallipoli
  • M. Mucciarelli
  • R. Caputo
Original Research Paper


On 31 October and 1 November 2002, the Basso Molise area (Southern Italy) was struck by two earthquakes of moderate magnitude (ML =  5.4 and 5.3). The epicentral area showed a high level of damage, attributable both to the high vulnerability of existing buildings and to site effects caused by the geological and geomorphological settings. Specifically, the intensity inside the town of San Giuliano di Puglia was two degrees higher than in neighbouring towns. Also, within San Giuliano di Puglia, the damage varied notably. The site response in the city was initially evaluated from horizontal-to-vertical spectral ratios (HVSR) from a limited number of strong motion recordings of the most severe aftershocks. Several microtremor measurements were also available. Both data sets indicated the simultaneous presence of two amplification peaks: one around 6 Hz, attributed in previous studies to the strong, shallow impedance contrast among landfill/clay and calcarenites, and one at 2 Hz related to the first S-wave arrivals and predominantly seen only on one receiver component. Further studies performed on weak-motion recordings also showed strong amplification on the vertical receiver component, thus indicating an underestimation of the amplification by the HVSR technique. Additionally, a 2D-model of the geology of the sub-surface was developed, reproducing the flower-shaped structure generated during the late orogenic transpressive regime. The numerical (finite-difference hybrid) simulation reproduced the two peaks of the observed data at slightly higher frequencies. The model also confirmed that the borders of the flower structure define a boundary between amplification levels, with higher amplification inside.


Molise earthquake Seismic damage Site amplification Spectral ratio 2D modelling 



Arias Intensity


Horizontal-to-vertical spectral ratio


Reference site method


San Giuliano di Puglia


Finite difference


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albarello D (2001) Detection of spurious maxima in the site transfer function estimated by the HVSR technique. Bull Seism Soc Am 91(4):718–724CrossRefGoogle Scholar
  2. Arias A (1970) A measure of earthquake intensity. In: Hansen RJ (ed)., Seismic design for nuclear power plants. MIT, Cambridge, MA, pp. 438–483Google Scholar
  3. Augliera P, Dolce M, Franceschina G, Frapiccini M, Gallipoli MR, Harabaglia P, Luzi L, Masi A, Marzorati S, Mucciarelli M, Pacor F, Samela L (2004) Site Amplification in the epicentral area of the 31/10/2002 earthquake (Molise, Italy): comparison between damage data, microtremors, weak- and strong-motions. In: proceedings of the 13th world conference on earthquake engineering, vancouver, BC, Canada Paper No. 725Google Scholar
  4. Baranello S, Bernabini M, Dolce M, Pappone G, Rosskopf C, Sanò T, Cara PL, De Nardis R, Di Pasquale G, Goretti A, Gorini A, Lembo P, Marcucci S, Marsan P, Martini MG, Naso G (2003) Final report on the seismic microzonation of the town of San Giuliano di Puglia (in Italian). Department of Civil Protection, RomaGoogle Scholar
  5. Bard PY (1995) Effects of surface geology on ground motion: Recent results and remaining issues. In: Duma (ed.),Proceedings of the 10th European conference on earthquake engineering, Balkema, Rotterdam, pp 305–323Google Scholar
  6. Borcherdt RD (1970) Effects of local geology on ground motion near San Francisco Bay. Bull Seism Soc Am 60:29–61Google Scholar
  7. Caputo R (1998) Transcurrent ‘synorogenic’ deformational events. 79° Congresso Società Geologica Italiana, Palermo, September, 21–23, 199 Abstract book 2, p 222Google Scholar
  8. Cara F, Rovelli A, Di Giulio G, Marra F, Braun T, Cultrera G, Azzara R, Boschi E (2005) The role of site effects on the intensity anomaly of San Giuliano di Puglia inferred from aftershocks of the Molise, Central Southern Italy, sequence, November 2002. Bull Seism Soc Am 95(4):1457–1468CrossRefGoogle Scholar
  9. Crostella A, Vezzani L (1964) La geologia dell’ Appennino Foggiano. Boll Soc Geo Ital 83:121–142 (in Italian)Google Scholar
  10. Dazzaro L, Di Nocera S, Pescatore T, Rapisardi L, Romeo M, Russo B, Senatore MR, Torre M (1988) Geologia del margine della catena appenninica tra il Fiume Fortore ed il Torrente Calaggio (Monti della Daunia—Appennino meridionale). Mem Soc Geo Ital 41:411–422 (in Italian)Google Scholar
  11. Dolce M, Masi A, Samela C, Santarsiero G, Vona M, Zuccaio G, Cacace F, Papa F (2004) Esame delle caratteristiche tipologiche e del danneggiamento del patrimonio edilizio di San Giuliano di Puglia. In: Proceedings of the XI Italian conference on L’ingegneria sismica in Italia, Genoa, Italy, pp. 25–29 January 2004 (in Italian)Google Scholar
  12. Giaccio B, Ciancia S, Messina P, Pizzi A, Saroli M, Sposato A, Cittadini A, Di Donato V, Esposito P, Galadini F (2004) Caratteristiche geologico-geomorfologiche ed effetti di sito a San Giuliano di Puglia (CB) e in altri abitati colpiti dalla sequenza sismica dell’ottobre-novembre 2002. Il Quaternario (Ital J Quaternary Sci) 17(1):Aiqua 83–99 (in Italian)Google Scholar
  13. Giampiccolo E, Gresta S, Mucciarelli M, De Guidi G, Gallipoli MR (2001) Site response in the city of Catania (Eastern Sicily) from microtremor measurements. Ann Geofisica 44(1):1–11Google Scholar
  14. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seism Soc Am 88(1):228–241Google Scholar
  15. Lachet C, Hatzfeld D, Bard PY, Theodulidis N, Papaioannou N, Savvaidis A (1996) Site effects and microzonation in the city of Thessaloniki (Greece): comparison of different approaches. Bull Seism Soc Am 86(6):1692–1703Google Scholar
  16. Louie JN (2001) Faster better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull Seism Soc Am 91(2):347–364CrossRefGoogle Scholar
  17. Mucciarelli M, Masi A, Vona M, Gallipoli MR, Harabaglia P, Caputo R, Piscitelli S, Rizzo E, Picozzi M, Albarello D, Lizza C (2003) Quick survey of the possible causes of damage enhancement observed in San Giuliano after the 2002 Molise, Italy seismic sequence. J Earthq Eng 7(4):599–614CrossRefGoogle Scholar
  18. Nakamura Y (1989) A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface. Q Rept RTRI Jpn 30:25–33Google Scholar
  19. Parolai S, Bindi D, Baumbach M, Grosser H, Milkerereit C, Karakisa S, Zünbül S (2004a) Comparison of different site response estimation techniques using aftershocks of the 1999 Izmit earthquake. Bull Seism Soc Am 94(3):1096–1108CrossRefGoogle Scholar
  20. Parolai S, Richwalski SM, Milkereit C, Bormann P (2004b) Assessment of the stability of the H/V spectral ratios from ambient noise: comparison with earthquake data in the Cologne area (Germany). Tectonophysics 390:57–73CrossRefGoogle Scholar
  21. Picozzi M, Parolai S, Albarello D (2005) Statistical analysis of noise horizontal to vertical spectral ratios (HVSR). Bull Seism Soc Am 95(5):1779–1786CrossRefGoogle Scholar
  22. Richwalski SM, Fäcke A, Parolai S, Stempniewski L (2006) Influence of site and source dependent ground motion scenarios on the seismic safety of long-span bridges in Cologne, Germany. Nat Haz 38(1–2):239–248Google Scholar
  23. Silvestri F, Vitone C, D’Onofrio A, Cotecchia F, Puglia R, Santucci F, De Magistris F (2006a) The influence of meso-structure on the mechanical behaviour of a marly clay from low to high strains. In: Proceedings of the symposium to celebrate professional Tatsuoka’s 60th birthday, RomeGoogle Scholar
  24. Silvestri F, D’Onofrio A, Guerricchio A, Lanzo G, Pagliaroli A, Puglia R, Santucci F, De Magistris F, Sica S, Eva C, Ferretti G, Di Capua G (2006b) Modelli geotecnici 1D e/o 2D per i comuni di San Giuliano di Puglia, Bonefro, Ripabottoni, Colletorto e Santa Croce di Magliano. Deliverable D8, S3 Project. internet: http://esse3.mi.ingv.it/S3_doc.html (in Italian)Google Scholar
  25. Steidl JH, Tumarkin AG, Archuleta R (1996) What is a reference site? Bull Seism Soc Am 86(6): 1733–1748Google Scholar
  26. Strollo A (2003) Modellazione degli effetti di sito mono- e bi-dimensionali a San Giuliano di Puglia (CB) [Modelling of 1D and 2D site effects in San Giuliano di Puglia(CB)]. Master Thesis, University of Basilicata, Italy (in Italian)Google Scholar
  27. Vallée M, Di Luccio F (2005) Source analysis of the 2002 Molise, southern Italy, twin earthquakes (10/31 and 11/01). Geophys Res Lett 32:L12309. DOI:10.1029/2005GL022687)Google Scholar
  28. Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull Seism Soc Am 88:228–241Google Scholar
  29. Zahradnik J, Moczo P (1996) Hybrid seismic modeling based on discrete-wave number and finite-difference methods. Pure Appl Geophys 148:21–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. Strollo
    • 1
    • 2
    • 3
  • S. M. Richwalski
    • 1
    • 4
  • S. Parolai
    • 1
  • M. R. Gallipoli
    • 3
    • 5
  • M. Mucciarelli
    • 3
  • R. Caputo
    • 3
  1. 1.GeoForschungsZentrum PotsdamPotsdamGermany
  2. 2.University of PotsdamPotsdamGermany
  3. 3.DiSGG University of BasilicataPotenzaItaly
  4. 4.Center for Disaster Management and Risk Reduction Technology (CEDIM)KarlsruheGermany
  5. 5.IMAA-CNR Tito ScaloPotenzaItaly

Personalised recommendations