Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 3, pp 410–412 | Cite as

Method for Determining Microcirculatory Hemodynamics by Laser Speckle Interferometry in Small Animals

  • Y. N. SmolyakovEmail author
  • B. I. Kuznik
  • J. A. Bondarchuk
  • I. I. Shakhmatov
  • V. I. Obydenko
  • L. M. Baranchugova

We performed experimental evaluation of various positions (ear, paw, and tail) of the of dynamic light scattering sensor of near-infrared laser radiation (840 nm) using speckle interferometry in rats. Dynamic monitoring of the reactions to prolonged ultrasound exposure (7 days) showed that the base of the tail is most suitable for this purpose. Additionally, analysis of microcirculation parameters on the surface of skin autograft was performed. The method of analysis of hemodynamics in humans was adapted for animals.

Key Words

speckle microcirculation small animals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleksandrin VV. Wavelet analysis of cerebral blood flow in rats. Regional blood circulation and microcirculation. Regionar. Krovoobr. Mikrotsirk. 2010;9(4):63-66. Russian.Google Scholar
  2. 2.
    Belichenko VМ, Grigoreva ТA, Shoshenko СA. The muscular blood flow in rats in ontogenesis as measured by the needle probe laser doppler flowmeter “LAKK-01”. Ross. Fiziol. Zh. 2007;93(6):655-660. Russian.Google Scholar
  3. 3.
    Blazhko AA, Shakhmatov II, Kiselev VI, Lycheva NA, Moskalenko SV. Changes of microcirculation in rats detected by laser Doppler flowmetry at physical load accompanied by the development of thrombotic readiness. Regionar. Krovoobr. Mikrotsirk. 2017;16(4):60-64. Russian.Google Scholar
  4. 4.
    Ladnich NA, Smolyakov YuN. Possible options for the formation of integrated indicators for assessing biomedical research. Informatika Sistemy Upravleniya. 2007;(S1):16-18. Russian.Google Scholar
  5. 5.
    Fine I, Kaminsky A. Speckle-based measurement of the light scattering by red blood cells in vivo. Dynamics and Fluctuations in Biomedical Photonics VIII. International Society for Optics and Photonics, 2011;7898. ID 78980A. doi:
  6. 6.
    Fine I, Kaminsky AV, Shenkman L. A new sensor for stress measurement based on blood flow fluctuations. Dynamics and Fluctuations in Biomedical Photonics XII. Tuchin VV, ed. SPIE Press, 2016;9707. ID 970705. doi:
  7. 7.
    Handbook of Photonics for Biomedical Science. Tuchin VV, ed. CRC Press, 2010.Google Scholar
  8. 8.
    Kuznik BI, Smolyakov YN, Davydov SO, Tsybikov NN, Maksimova OG, Malinina AV, Shenkman L, Kaminsky A, Fine I. Impact of fitness status on the optically measured hemodynamic indexes. J. Healthc. Eng. 2018;2018. ID 1674931. doi: 10.1155/2018/1674931CrossRefGoogle Scholar
  9. 9.
    Nemeth N, Lesznyak T, Brath E, Acs G, Nagy A, Pap-Szekeres J, Furka I, Miko I. Changes in microcirculation after ischemic process in rat skeletal muscle. Microsurgery. 2003;23(5):419-423.CrossRefGoogle Scholar
  10. 10.
    R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:; Available at: (Accessed 23 January 2019).
  11. 11.
    Ul’Yanov SS, Tuchin VV, Bednov AA, Brill GE, Zakharova EI. The application of speckle interferometry for the monitoring of blood and lymph flow in microvessels. Lasers Med. Sci. 1997;12(1):31-41.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Y. N. Smolyakov
    • 1
    Email author
  • B. I. Kuznik
    • 1
  • J. A. Bondarchuk
    • 2
  • I. I. Shakhmatov
    • 2
  • V. I. Obydenko
    • 1
  • L. M. Baranchugova
    • 1
  1. 1.Chita State Medical AcademyChitaRussia
  2. 2.Altai State Medical UniversityBarnaulRussia

Personalised recommendations