Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 3, pp 390–394 | Cite as

Morphological Characteristic of Melanoma B16 Progression in C57BL/6 Mice with High and Low Resistance to Hypoxia

  • I. A. Fridman
  • E. A. Ponomarenko
  • O. V. Makarova
  • E. A. Postovalova
  • N. A. Zolotova
  • D. N. Khochanskiy
  • V. A. Mkhitarov
  • I. S. Tsvetkov
  • A. M. KosyrevaEmail author
Article

The features of B16 melanoma progression in male C57BL/6 mice with initially high and low resistance to hypoxia were studied. To assess the resistance to hypoxia, the mice were placed in a low-pressure chamber at a simulated altitude of 10,000 m. One month after testing, B16 melanoma was inoculated to high- and low-resistant animals. In 19 days after melanoma transplantation, the severity of melanoma progression was assessed by morphological and immunofluorescent methods. The expression of vegf-a and hif-1a in the liver of melanomabearing and control mice was evaluated by real-time PCR. Tumor growth progression was more pronounced in low-resistant mice, which was seen from high weight of the primary tumor node, relative necrosis area, proliferation rates (mitotic index and number of Ki-67+ cells), and expression of vegf-a gene in the liver. In high-resistant to hypoxia animals, the number of caspase-3+ cells dying by apoptosis was higher. The data on more rapid melanoma progression in mice with low resistance to hypoxia should be considered during the search of new prognostic markers and methods for therapy of malignant neoplasms.

Key Words

melanoma B16 VEGF Ki-67 caspasa-3 Hif-1α 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Georgiev GP. Molecular and genetic mechanisms of tumor progression. Sorosovsk. Obrazovat. Zh. 2000;6(11):1-6. Russian.Google Scholar
  2. 2.
    Luk’yanova LD. Molecular mechanisms of tissue hypoxia and adaptation. Fiziolog. Zh. 2003;49(3):17-35. Russian.Google Scholar
  3. 3.
    Lyzhko NA. Molecular-genetic mechanisms of initiation, promotion and progression of tumors. Ross. Bioter. Zh. 2017;16(4):7-17. Russian.Google Scholar
  4. 4.
    Pavlov KA, Gershtein ES, Dubova EA, Shchegolev AI. Vascular endothelial growth factor and type 2 receptor for this factor in vascular malformations. Bull. Exp. Biol. Med. 2011;150(4):481-484.CrossRefGoogle Scholar
  5. 5.
    Manual on Immunohistochemical Diagnostics of Human Tumors. Kazan, 2012. Russian.Google Scholar
  6. 6.
    Freshney RI. Culture of Animal Cells. Moscow, 2010. Russian.Google Scholar
  7. 7.
    Almendros I, Montserrat JM, Torres M, Dalmases M, Cabañas ML, Campos-Rodríguez F, Navajas D, Farré R. Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea. Respir. Physiol. Neurobiol. 2013;186(3):303-307.CrossRefGoogle Scholar
  8. 8.
    Burghoff S, Gong X, Viethen C, Jacoby C, Flögel U, Bongardt S, Schorr A, Hippe A, Homey B, Schrader J. Growth and metastasis of B16-F10 melanoma cells is not critically dependent on host CD73 expression in mice. BMC Cancer. 2014;14. ID 898. doi: https://doi.org/10.1186/1471-2407-14-898
  9. 9.
    Fidler IJ. Selection of successive tumour lines for metastasis. Nat. New Biol. 1973;242(118):148-149.CrossRefGoogle Scholar
  10. 10.
    Fidler IJ, Nicolson GL. Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J. Natl Cancer Inst. 1976;57(5):1199-1202.CrossRefGoogle Scholar
  11. 11.
    Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int. J. Nanomedicine. 2018;13:6049-6058.CrossRefGoogle Scholar
  12. 12.
    Loizzi V, Del Vecchio V, Gargano G, De Liso M, Kardashi A, Naglieri E, Resta L, Cicinelli E, Cormio G. Biological pathways involved in tumor angiogenesis and bevacizumab based anti-angiogenic therapy with special references to ovarian cancer. Int. J. Mol. Sci. 2017;18(9). pii: E1967. doi:  https://doi.org/10.3390/ijms18091967
  13. 13.
    Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625-634.CrossRefGoogle Scholar
  14. 14.
    Thiersch M, Swenson ER. High altitude and cancer mortality. High Alt. Med. Biol. 2018;19(2):116-123.CrossRefGoogle Scholar
  15. 15.
    Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist. 2004;9(Suppl. 5):4-9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • I. A. Fridman
    • 1
  • E. A. Ponomarenko
    • 1
  • O. V. Makarova
    • 1
  • E. A. Postovalova
    • 1
  • N. A. Zolotova
    • 1
  • D. N. Khochanskiy
    • 1
  • V. A. Mkhitarov
    • 1
  • I. S. Tsvetkov
    • 1
  • A. M. Kosyreva
    • 1
    Email author
  1. 1.Research Institute of Human MorphologyMoscowRussia

Personalised recommendations