Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 3, pp 378–380 | Cite as

Changes in the Frequency of Rhythmic Excitation of Retzius Cells during Thermal Stimulation of Leech Skin

  • T. A. Kazakova
  • A. I. YusipovichEmail author
  • S. K. Pirutin
  • G. V. Maksimov

Thermal stimulation of various parts of the skin in Hirudo medicinalis increases the frequency of spontaneous rhythmic excitation of Retzius neurons in leech ganglia. It was shown that the frequency of spontaneous rhythmic excitation of Retzius cells in the segmental ganglion increases only in response to thermal stimulation and returns to initial values upon cooling. This effect was also detected in neurons that are not directly connected by nerve fibers with the particular skin area. Changes in the frequency of spontaneous rhythmic excitation of Retzius cells in the segmental ganglion were observed during thermal stimulation of not only leech body, but also of the head and caudal suckers. These changes in spontaneous rhythmic excitation of Retzius cells in the segmental ganglion during thermal stimulation were observed in Hirudo medicinalis, but not in Macrobdella decora.

Key Words

Hirudo medicinalis Macrobdella decora rhythmic excitation thermoreception 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baca SM, Marin-Burgin A, Wagenaar DA, Kristan WB Jr. Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit. Neuron. 2008;57(2):276-289.CrossRefGoogle Scholar
  2. 2.
    Baljon PL, Wagenaar DA. Responses to conflicting stimuli in a simple stimulus-response pathway. J. Neurosci. 2015;35(6):2398-2406.CrossRefGoogle Scholar
  3. 3.
    Burgin AM, Szczupak L. Network interactions among sensory neurons in the leech. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2003;189(1):59-67.CrossRefGoogle Scholar
  4. 4.
    Groome JR, Vaughan DK, Lent CM. Ingestive sensory inputs excite serotonin effector neurones and promote serotonin depletion from the leech central nervous system and periphery. J. Exp. Biol. 1995;198(Pt 6):1233-1242.PubMedGoogle Scholar
  5. 5.
    Harley CM, Cienfuegos J, Wagenaar DA. Developmentally regulated multisensory integration for prey localization in the medicinal leech. J. Exp. Biol. 2011;214(Pt 22):3801-3807.CrossRefGoogle Scholar
  6. 6.
    Maximov GV, Turovetskii VB, Chatterdji S, Andreev AI, Mironova YE, Brindikova TA, Rubin AB. Role of membrane-bound Ca2+ in regulating relationships between neuron and neuroglia during rhythmic excitation. Biophysics. 2000;45(3):529-533.Google Scholar
  7. 7.
    Velázquez-Ulloa N, Blackshaw SE, Szczupak L, Trueta C, García E, De-Miguel FF. Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech. J. Neurobiol. 2003;54(4):604-617.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • T. A. Kazakova
    • 1
  • A. I. Yusipovich
    • 1
    Email author
  • S. K. Pirutin
    • 1
  • G. V. Maksimov
    • 1
  1. 1.Faculty of BiologyM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations