Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 3, pp 375–377 | Cite as

Assessment of Biocompatibility and Local Action of Biomaterial for Production of an Envelope for Implanted Heart Electronic Devices

  • D. V. ShadrinaEmail author
  • A. A. Venediktov
  • S. V. Evdokimov
  • V. A. Vaskovskii
  • E. A. Artyukhina
  • A. Sh. Revishvili
  • S. S. Durmanov
  • V. V. Bazylev
Article
  • 1 Downloads

We studied a biomaterial for a new domestic product, a biological envelope for implantation of cardiac electronic devices. The product is designed to prevent complications after pacemaker implantation and to facilitate the reimplantation procedure. By chemical and biological processing of raw materials (submucosa of porcine small intestine), an acellular extracellular collagen matrix was obtained. The biocompatibility of the material was tested in vitro using stem cell cultures. The biomaterial for fabrication of the envelope is not cytotoxic, biocompatible, and represents a suitable substrate for attachment, growth, and reproduction of stem cells. The biological effect of the material was studied in vivo on the model of heterotopic implantation in small laboratory animals. The biomaterial did not induce inflammation and tissue reaction and was completely transformed into healthy vascularized tissue without scars in 90 days after implantation.

Key Words

extracellular collagen matrix cardiac implantable electronic devices cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerdisch MW, Shea RJ, Barron MD. Clinical experience with CorMatrix extracellular matrix in the surgical treatment of mitral valve disease. J. Thorac. Cardiovasc. Surg. 2014;148(4):1370-1378.CrossRefGoogle Scholar
  2. 2.
    Lindberg K, Badylak SF. Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins. Burns. 2001;27(3):254-266.CrossRefGoogle Scholar
  3. 3.
    McDevitt CA, Wildey GM, Cutrone RM. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. Biomed. Mater. Res A. 2003;67(2):637-640.CrossRefGoogle Scholar
  4. 4.
    Slachman FN. Constructive remodeling of CorMatrix extracellular matrix after aortic root repair in a 90-year-old woman. Ann. Thorac. Surg. 2014;97(5):e129-e131.CrossRefGoogle Scholar
  5. 5.
    Sündermann SH, Rodriguez Cetina Biefer H, Emmert MY, Falk V. Use of extracellular matrix materials in patients with endocarditis. Thorac. Cardiovasc. Surg. 2012;62(1):76-79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • D. V. Shadrina
    • 1
    Email author
  • A. A. Venediktov
    • 1
  • S. V. Evdokimov
    • 2
  • V. A. Vaskovskii
    • 3
  • E. A. Artyukhina
    • 3
  • A. Sh. Revishvili
    • 3
  • S. S. Durmanov
    • 4
  • V. V. Bazylev
    • 4
  1. 1.Cardioplant CompanyFederal Center of Cardiovascular SurgeryPenzaRussia
  2. 2.MedInzh Research-and-Production CompanyPenzaRussia
  3. 3.A. V. Vishnevsky National Medical Research Center of SurgeryMoscowRussia
  4. 4.Federal Center of Cardiovascular SurgeryPenzaRussia

Personalised recommendations