Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 3, pp 361–365 | Cite as

Analysis of Antitumor Activity of the Liposomal Photosensitizer Lipophthalocyan

  • A. V. Lantsova
  • L. M. Borisova
  • G. A. Meerovich
  • N. D. BunyatyanEmail author
  • Yu. V. Olefir
  • A. B. Prokof’ev
  • V. A. Evteev
  • M. M. Sapovskii
  • M. P. Kiseleva
  • E. V. Sanarova
  • O. L. Orlova
  • M. V. Dmitrieva
  • A. P. Polozkova
  • N. A. Oborotova
  • M. A. Ogay
  • Z. J. Khadzhieva
  • L. L. Nikolaeva
ONCOLOGY
  • 4 Downloads

We studied specific antitumor activity of a liposomal drug based on tetra-3-phenylthiophthalocyanine aluminum hydroxide (lipophthalocyan) intended for photodynamic therapy. The optimal dose and protocol for photodynamic therapy with lipophthalocyan were chosen in experiments on mice: single intravenous dose of 6 mg/kg with a 5-h interval between administration and laser exposure and irradiation energy density of 400 J/cm2. A wide spectrum antitumor activity of lipophthalocyan was demonstrated in vivo for various transplantable mouse tumors (Lewis lung epidermoid carcinoma, S37 sarcoma, and colon adenocarcinoma AKATOL). The results show the possibility of using lipophthalocyan for photodynamic therapy of tumors of surface localization (skin and mucosa tumors).

Key Words

photosensitizer lipophthalocyan specific activity photodynamic therapy transplantable mouse tumors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bol’shakov OP, Neznanov NG, Babakhanyan RV. Didactic and ethical aspects of studies on biomodels and laboratory animals. Kachestv. Klin. Prakt. 2002;(1):24-28. Russian.Google Scholar
  2. 2.
    Bud’ko AP, Deichman ZG, Meerovich GA, Borisova LM, Meerovich IG, Lanstova AV, Kul’bachevskaya NYu. Study of pharmacokinetics of liposomal photosensitiser based on hydroxyaluminum tetra-3-phenylthiophthalocyanine on mice. Biomedical Photonics. 2018;7(4):16-22. Russian.CrossRefGoogle Scholar
  3. 3.
    Meerovich GA, Borisova LM, Bud’ko AP, Kiseleva MP, Nikolaeva LL, Meerovich IG, Lantsova AV, Chernova SV, Oborotova NA. Study of level and selectivity of liposomal form of photosensitiser hydroxyaluminum tetra-3-phenylthiophthalocyanine accumulation on transplantable mice tumor models at different ways of transplantation. Ross. Bioter. Zh. 2017;16(4):74-79. Russian.Google Scholar
  4. 4.
    Manual for Preclinical Studies of New Pharmacological Substances. Part I, Mironov AN, ed. Moscow, 2012. P. 642-671. Russian.Google Scholar
  5. 5.
    Allen CM, Sharman WM, Van Lier JE. Current status of phthalocyanines in the photodynamic therapy of cancer. J. Porphyrins Phthalocyan. 2001;5(2):161-169.CrossRefGoogle Scholar
  6. 6.
    Allison RR. Future FDT. Photodiagnosis Photodyn. Ther. 2009;6(3-4):231-234.Google Scholar
  7. 7.
    Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis Photodyn. Ther. 2010;7(2):61-75.CrossRefGoogle Scholar
  8. 8.
    Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol. 2000;1:212-219.CrossRefGoogle Scholar
  9. 9.
    Miller JD, Baron ED, Scull H, Hsia A, Berlin JC, McCormick T, Colussi V, Kenney ME, Cooper KD, Oleinick NL. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: the case experience with preclinical mechanistic and early clinical-translational studies. Toxicol. Appl. Pharmacol. 2007;224(3):290-299.CrossRefGoogle Scholar
  10. 10.
    Ortel B, Shea CR, Calzavara-Pinton P. Molecular mechanisms of photodynamic therapy. Front. Biosci. (Landmark Ed). 2009;14. P.4157-4172.CrossRefGoogle Scholar
  11. 11.
    Peng Q, Farrants GW, Madslien K, Bommer JC, Moan J, Danielsen HE, Nesland JM. Subcellular localization, redistribution and photobleaching of sulfonatedaluminumphthalocyanines in a human melanoma cell line. Int. J. Cancer. 1991;49(2):290-295.CrossRefGoogle Scholar
  12. 12.
    Sanarova EV, Lantsova AV, Polozkova AP, Orlova OL, Meerovich IG, Borisova LM, Kiseleva MP, Smirnova ZS, Kul’bachevskaya NY, Konyaeva OI, Oborotova NA. Effectiveness of liposomal system of delivery of hydrophobic antineoplastic Thiosens photosensitizer. Nanotechnologies in Russia. 2015;10(5-6):492-500.CrossRefGoogle Scholar
  13. 13.
    Sanarova E, Meerovich I, Lantsova A, Kotova E, Shprakh Z, Polozkova A, Orlova O, Borisova L, Smirnova Z, Oborotova N, Baryshnikov A, Meerovich G, Lukyanets E. Thiosens liposomal dosage form technology development and photodynamic efficiency assessment. J. Drug Deliv. Sci. Technol. 2014;24(4):315-319.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • A. V. Lantsova
    • 1
  • L. M. Borisova
    • 1
  • G. A. Meerovich
    • 2
  • N. D. Bunyatyan
    • 3
    • 4
    Email author
  • Yu. V. Olefir
    • 3
    • 4
  • A. B. Prokof’ev
    • 3
    • 4
  • V. A. Evteev
    • 4
  • M. M. Sapovskii
    • 3
  • M. P. Kiseleva
    • 1
  • E. V. Sanarova
    • 1
  • O. L. Orlova
    • 1
  • M. V. Dmitrieva
    • 1
  • A. P. Polozkova
    • 1
  • N. A. Oborotova
    • 1
  • M. A. Ogay
    • 5
  • Z. J. Khadzhieva
    • 5
  • L. L. Nikolaeva
    • 1
    • 3
  1. 1.N. N. Blokhin National Medical Research Center of OncologyMinistry of Health of the Russian FederationMoscowRussia
  2. 2.A. M. Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.I. M. Sechenov First Moscow State Medical UniversityMinistry of Health of the Russian Federation (Sechenov University)MoscowRussia
  4. 4.Scientific Center for Expert Evaluation of Medicinal ProductsMinistry of Health of RussiaMoscowRussia
  5. 5.Pyatigorsk Medical and Pharmaceutical Institute, Branch of the Volgograd State Medical UniversityMinistry of Health of the Russian FederationPyatigorskRussia

Personalised recommendations