Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 3, pp 341–344 | Cite as

Role of GABAA Receptors in the Mechanism of In Vivo Psychotropic Activity of Amitriptyline in Rats

  • A. O. KorolevEmail author
  • T. S. Kalinina
  • A. V. Volkova
  • A. A. Shimshirt
  • N. V. Kudryashov
  • T. A. Voronina

Standard water-reinforced drug discrimination model was employed to train Wistar rats to discriminate the intraperitoneal injections of tricyclic antidepressant amitriptyline (5.4 mg/kg) and physiological saline. To examine the role of GABAA receptors in psychotropic action of amitriptyline, the substitution tests were performed with muscimol (0.1-1.0 mg/kg) and pregnenolone (30-50 mg/kg). Similar tests were carried out with amitriptyline interoceptive antagonists bicuculline (1 mg/kg), flumazenil (15 mg/kg), finasteride (5 mg/kg), and indomethacin (7.5 mg/kg). The study showed that interoceptive effects of amitriptyline depend on functional activity of GABAA receptors but not on the neurosteroid site of GABAA receptor complex.

Key Words

drug discrimination GABAA receptors tricyclic antidepressant amitriptyline rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borovikov VP. Statistica: Art Analysis of the Data on the Computer: For professionals. St. Petersburg, 2003. Russian.Google Scholar
  2. 2.
    Kaluev AV, Nutt DJ. On the role of GABA in anxiety and depression. Eksp. Klin. Farmakol. 2004;67(4):71-76. Russian.PubMedGoogle Scholar
  3. 3.
    Korolev AO, Kalinina TS, Volkova AV, Mokrov GV, Kudryashov NV, Voronina TA. Comparative Study of Discriminative Stimulus Properties of Antidepressants. Eksp. Klin. Farmakol. 2014;77(7):3-7.PubMedGoogle Scholar
  4. 4.
    Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci. 2005;6(7):565-675.CrossRefGoogle Scholar
  5. 5.
    Girdler SS, Klatzkin R. Neurosteroids in the context of stress: implications for depressive disorders. Pharmacol. Ther. 2007;116(1):125-139.CrossRefGoogle Scholar
  6. 6.
    Korpi ER, Gründer G, Lüddens H. Drug interactions at GABA(A) receptors. Prog. Neurobiol. 2002;67(2):113-159.CrossRefGoogle Scholar
  7. 7.
    Kudryashov NV, Kalinina TS, Shimshirt AA, Korolev AO, Volkova AV, Voronina TA. Antidepressant-like effect of fluoxetine may depend on translocator protein activity and pretest session duration in forced swimming test in mice. Behav. Pharmacol. 2018;29(4):375-378. doi: CrossRefPubMedGoogle Scholar
  8. 8.
    Malatynska E, Crites G, Yochum A, Kopp R, Giroux ML, Dilsaver SC. Schild regression analysis of antidepressant and bicuculline antagonist effects at the GABAA receptor. Pharmacology. 1998;57(3):117-123.CrossRefGoogle Scholar
  9. 9.
    Malatynska E, Dilsaver SC, Knapp RJ, Giroux ML, Ikeda M, Yamamura HI. The interaction of a benzodiazepine receptor antagonist (Ro15-1788) with GABA and GABA receptor antagonists at the GABA(A) receptor chloride-ionophore complex. Neurochem. Int. 1991;18(3):405-410.CrossRefGoogle Scholar
  10. 10.
    Malatynska E, Miller C, Schindler N, Cecil A, Knapp A, Crites G, Rogers H. Amitriptyline increases GABA-stimulated 36Clinflux by recombinant (alpha 1 gamma 2) GABAA receptors. Brain Res. 1999;851(1-2):277-280.CrossRefGoogle Scholar
  11. 11.
    Möhler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology. 2012;62(1):42-53.CrossRefGoogle Scholar
  12. 12.
    Morrow AL, Suzdak PD, Paul SM. Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur. J. Pharmacol. 1987;142(3):483-485.CrossRefGoogle Scholar
  13. 13.
    Uzunova V, Sampson L, Uzunov DP. Relevance of endogenous 3alpha-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl). 2006;186(3):351-361.CrossRefGoogle Scholar
  14. 14.
    Wettstein JG, Gauthier B. Discriminative stimulus effects of alprazolam and diazepam: generalization to benzodiazepines, antidepressants and buspirone. Behav. Pharmacol. 1992;3(3):229-237.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • A. O. Korolev
    • 1
    Email author
  • T. S. Kalinina
    • 1
  • A. V. Volkova
    • 1
  • A. A. Shimshirt
    • 1
  • N. V. Kudryashov
    • 1
    • 2
  • T. A. Voronina
    • 1
  1. 1.V. V. Zakusov Research Institute of PharmacologyMoscowRussia
  2. 2.I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)MoscowRussia

Personalised recommendations