Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 3, pp 334–340 | Cite as

Pericytes and Smooth Muscle Cells Circulating in the Blood as Markers of Impaired Angiogenesis during Combined Metabolic Impairments and Lung Emphysema

  • A. V. Pakhomova
  • O. V. Pershina
  • N. N. Ermakova
  • V. A. Krupin
  • E. S. Pan
  • O. D. Putrova
  • E. S. Khmelevskaya
  • O. E. Vaizova
  • A. S. Pozdeeva
  • A. M. Dygai
  • E. G. SkurikhinEmail author
Article

The changes in endothelial progenitor cells and progenitor cells of angiogenesis, pericytes and smooth muscle cells, were studied in female C57BL/6 mice with a combination of metabolic impairments induced by injections of sodium glutamate and lung emphysema modeled by the administration of cigarette smoke extract. It was observed that sodium glutamate significantly enhances pathological changes in the lungs (inflammation and lung emphysema) induced by the administration of cigarette smoke extract. Recruiting of endothelial progenitor cells (CD45CD31+CD34+ and CD31+CD34+CD146) and progenitor cells of angiogenesis (CD45CD117+CD309+) was registered in the injured lungs. Angiogenesis impairment induced by combined exposure is related to altered migration of pericytes (CD31CD34CD146+) and smooth muscle cells (CD31CD34+CD146+) in emphysema-like enlarged lung tissue.

Key Words

metabolic impairments lung emphysema endothelial progenitor cells pericytes smooth muscle cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chuchalin AG, Tseimakh I Ya, Momot AP, Mamaev AN, Karbyshev IA, Kostyuchenko GI. Changes in systemic inflammatory and hemostatic reactions in patients with exacerbation of chronic obstructive pulmonary disease with concomitant chronic heart failure and obesity. Pul’monologiya. 2014;(6):25-32. Russian.Google Scholar
  2. 2.
    Agustí A, Barberà JA, Wouters EF, Peinado VI, Jeffery PK. Lungs, bone marrow, and adipose tissue. A network approach to the pathobiology of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013;188(12):1396-1406.Google Scholar
  3. 3.
    Ambasta RK, Kohli H, Kumar P. Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. J. Transl. Med. 2017;15(1):185. doi:  https://doi.org/10.1186/s12967-017-1280-y CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cameron DP, Poon TK, Smith GC. Effects of monosodium glutamate administration in the neonatal period on the diabetic syndrome in KK mice. Diabetologia. 1976;12(6):621-626.CrossRefGoogle Scholar
  5. 5.
    Díez-Manglano J, Barquero-Romero J, Almagro P, Cabrera FJ, López García F, Montero L, Soriano JB; Working Group on COPD; Spanish Society of Internal Medicine. COPD patients with and without metabolic syndrome: clinical and functional differences. Intern. Emerg. Med. 2014;9(4):419-425.Google Scholar
  6. 6.
    Doyle MF, Tracy RP, Parikh MA, Hoffman EA, Shimbo D, Austin JH, Smith BM, Hueper K, Vogel-Claussen J, Lima J, Gomes A, Watson K, Kawut S, Barr RG. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema. PLoS One. 2017;12(3. ID e0173446. doi:  https://doi.org/10.1371/journal.pone.0173446 CrossRefGoogle Scholar
  7. 7.
    García-Rio F, Soriano JB, Miravitlles M, Muñoz L, Duran-Tauleria E, Sánchez G, Sobradillo V, Ancochea J. Impact of obesity on the clinical profile of a population-based sample with chronic obstructive pulmonary disease. PLoS One. 2014;9(8). ID e105220. doi:  https://doi.org/10.1371/journal.pone.0105220 CrossRefGoogle Scholar
  8. 8.
    Hanson C, LeVan T. Obesity and chronic obstructive pulmonary disease: recent knowledge and future directions. Curr. Opin. Pulm. Med. 2017;23(2):149-153.CrossRefGoogle Scholar
  9. 9.
    Lamonaca P, Prinzi G, Kisialiou A, Cardaci V, Fini M, Russo P. Metabolic disorder in Chronic Obstructive Pulmonary Disease (COPD) patients: towards a personalized approach using marine drug derivatives. Mar. Drugs. 2017;15(3). pii: E81. doi:  https://doi.org/10.3390/md15030081 CrossRefGoogle Scholar
  10. 10.
    Matsushita K, Dzau VJ. Mesenchymal stem cells in obesity: insights for translational applications. Lab. Invest. 2017;97(10):1158-1166.CrossRefGoogle Scholar
  11. 11.
    Matysková R, Maletínská L, Maixnerová J, Pirník Z, Kiss A, Zelezná B. Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57BL/6 and NMRI mice. Physiol. Res. 2008;57(5):727-734.PubMedGoogle Scholar
  12. 12.
    Miller J, Edwards LD, Agustí A, Bakke P, Calverley PM, Celli B, Coxson HO, Crim C, Lomas DA, Miller BE, Rennard S, Silverman EK, Tal-Singer R, Vestbo J, Wouters E, Yates JC, Macnee W; Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators. Comorbidity, systemic inflammation and outcomes in the ECLIPSE cohort. Respir. Med. 2013;107(9):1376-1384.Google Scholar
  13. 13.
    Nusaiba S, Fatima SA, Hussaini G, Mikail HG. Anaemogenic, obesogenic and thermogenic potentials of graded doses of monosodium glutamate sub-acutely fed to experimental Wistar rats. Curr. Clin. Pharmacol. 2018;13(4):273-278.CrossRefGoogle Scholar
  14. 14.
    Sasaki Y, Suzuki W, Shimada T, Iizuka S, Nakamura S, Nagata M, Fujimoto M, Tsuneyama K, Hokao R, Miyamoto K, Aburada M. Dose dependent development of diabetes mellitus and non-alcoholic steatohepatitis in monosodium glutamateinduced obese mice. Life Sci. 2009;85(13-14):490-498.CrossRefGoogle Scholar
  15. 15.
    Skurikhin EG, Pershina OV, Pakhomova AV, Pan ES, Krupin VA, Ermakova NN, Vaizova OE, Pozdeeva AS, Zhukova MA, Skurikhina VE, Grimm WD, Dygai AM. Endothelial progenitor cells as pathogenetic and diagnostic factors, and potential targets for GLP-1 in combination with metabolic syndrome and chronic obstructive pulmonary disease. Int. J. Mol. Sci. 2019;20(5). pii: E1105. doi:  https://doi.org/10.3390/ijms20051105 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • A. V. Pakhomova
    • 1
  • O. V. Pershina
    • 1
  • N. N. Ermakova
    • 1
  • V. A. Krupin
    • 1
  • E. S. Pan
    • 1
  • O. D. Putrova
    • 1
  • E. S. Khmelevskaya
    • 1
  • O. E. Vaizova
    • 2
  • A. S. Pozdeeva
    • 2
  • A. M. Dygai
    • 1
  • E. G. Skurikhin
    • 1
    Email author
  1. 1.Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical CenterTomskRussia
  2. 2.Department of PharmacologySiberian State Medical University, Ministry of Health of the Russian FederationTomskRussia

Personalised recommendations