Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 3, pp 317–320 | Cite as

Intranasal Administration of Insulin and Gangliosides Improves Spatial Memory in Rats with Neonatal Type 2 Diabetes Mellitus

  • I. B. Sukhov
  • M. F. Lebedeva
  • I. O. Zakharova
  • K. V. Derkach
  • L. V. Bayunova
  • I. I. Zorina
  • N. F. AvrovaEmail author
  • A. O. Shpakov
Article

We analyzed the effects of intranasal administration of insulin (0.48 U/rat) and gangliosides (6 mg/kg) on spatial memory in rats with the neonatal model of the type 2 diabetes mellitus. The development of diabetes was verified by the glucose tolerance test. Insulin and gangliosides improved training and reversal training in diabetic rats in a modified version of Morris water maze test and reduced the time of finding the hidden platform. High effectiveness of intranasal administration of gangliosides to animals for the normalization of cognitive functions was shown for the first time. The effects of insulin and gangliosides were similar during training, but during reversal training, gangliosides were more effective. At the same time, intranasally administered insulin, unlike gangliosides, partially normalized glucose tolerance in rats with type 2 diabetes mellitus.

Key Words

type 2 diabetes mellitus spatial memory gangliosides intranasal administration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chistyakova OV, Bondareva VM, Shipilov VN, Sukhov IB, Shpakov AO. Intranasal administration of insulin eliminates the deficit of long-term spatial memory in rats with neonatal diabetes mellitus. Dokl. Biochem. Biophysics. 2011;440(1):216-218.CrossRefGoogle Scholar
  2. 2.
    Shpakov AO, Derkach KV. Brain Hormone Systems and Type 2 Diabetes Mellitus. St. Petersburg, 2015. Russian.Google Scholar
  3. 3.
    Avrova NF, Victorov IV, Tyurin VA, Zakharova IO, Sokolova TV, Andreeva NA, Stelmaschuk EV, Tyurina YY, Gonchar VS. Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes. Neurochem. Res. 1998;23(7):945-952.CrossRefGoogle Scholar
  4. 4.
    Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A. The evidence of metabolic-improving effect of metformin in Ay/a mice with geneticallyinduced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One. 2019;14(3). ID e0213779. doi:  https://doi.org/10.1371/journal.pone.0213779 CrossRefGoogle Scholar
  5. 5.
    Fan LW, Carter K, Bhatt A, Pang Y. Rapid transport of insulin to the brain following intranasal administration in rats. Neural Regen. Res. 2019;14(6):1046-1051.CrossRefGoogle Scholar
  6. 6.
    Gurnida DA, Rowan AM, Idjradinata P, Muchtadi D, Sekarwana N. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum. Dev. 2012;88(8):595-601.CrossRefGoogle Scholar
  7. 7.
    Herman ME, O’Keefe JH, Bell DSH, Schwartz SS. Insulin therapy increases cardiovascular risk in type 2 diabetes. Prog. Cardiovasc. Dis. 2017;60(3):422-434.CrossRefGoogle Scholar
  8. 8.
    Li L, Tian J, Long MK, Chen Y, Lu J, Zhou C, Wang T. Protection against experimental stroke by ganglioside GM1 is associated with the inhibition of autophagy. PLoS One. 2016;11(1). ID e0144219. doi:  https://doi.org/10.1371/journal.pone.0144219 CrossRefGoogle Scholar
  9. 9.
    Liu H, Radlowski EC, Conrad MS, Li Y, Dilger RN, Johnson RW. Early supplementation of phospholipids and gangliosides affects brain and cognitive development in neonatal piglets. J. Nutr. 2014;144(12):1903-1909.CrossRefGoogle Scholar
  10. 10.
    Pope-Coleman A, Schneider JS. Effects of chronic GM1 ganglioside treatment on cognitive and motor deficits in a slowly progressing model of Parkinsonism in non-human primates. Restor. Neurol. Neurosci. 1998;12(4):255-266.PubMedGoogle Scholar
  11. 11.
    Svennerholm L, Bråne G, Karlsson I, Lekman A, Ramström I, Wikkelsö C. Alzheimer disease - effect of continuous intracerebroventricular treatment with GM1 ganglioside and a systematic activation programme. Dement. Geriatr. Cogn. Disord. 2002;14(3):128-136.CrossRefGoogle Scholar
  12. 12.
    Vancetto MD, Curi LC, Pereira CA. Neutralization of the effect of Crotalus durissus terrificus venom by gangliosides. Braz. J. Med. Biol. Res. 1995;28(5):553-556.PubMedGoogle Scholar
  13. 13.
    Yamamoto HA, Mohanan PV. Ganglioside GT1b and melatonin inhibit brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Brain Res. 2003;964(1):100-106.CrossRefGoogle Scholar
  14. 14.
    Zakharova IO, Sokolova TV, Vlasova YA, Furaev VV, Rychkova MP, Avrova NF. GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen peroxide toxicity. Neurochem. Res. 2014;39(11):2262-2275.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • I. B. Sukhov
    • 1
  • M. F. Lebedeva
    • 1
  • I. O. Zakharova
    • 1
  • K. V. Derkach
    • 1
  • L. V. Bayunova
    • 1
  • I. I. Zorina
    • 1
  • N. F. Avrova
    • 1
    Email author
  • A. O. Shpakov
    • 1
  1. 1.Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations